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A B S T R A C T

Resilience is a crucial benchmark in characterizing the comprehensive capability of the emergency material 
support system (EMSS) to respond to major risk events. Given the involvement of multiple stakeholders, multiple 
stages and dynamic evolution, EMSS resilience assessment remains a challenge. Therefore, we attempt to develop 
a novel data–intelligence–driven three–stage dynamic model based on multi–source text data and multi–expert 
knowledge. In Stage 1, a large language models–enhanced named entity recognition model is proposed to extract 
and analyze EMSS risk events, providing a foundational dataset for scenario construction. In Stage 2, an onto
logy–based scenario construction model is proposed to abstract risk events into ontological concepts, providing a 
feature reference for the hierarchical system of assessment criteria. In Stage 3, a feature–matching assessment 
model is proposed to quantify the profile of EMSS resilience, where the uncertainty and variability in experts’ 
perceptions of resilience feature are addressed. Subsequently, the model effectiveness is demonstrated in a case 
study, in which the key criteria and improvement paths for EMSS resilience are identified. This study provides a 
holistic solution and efficient methodology for EMSS resilience assessment, offering significant insights into a 
multifaceted recognition of EMSS resilience to risk scenarios.

1. Introduction

An emergency material support system (EMSS) is an essential part of 
the national emergency management system in China, which aims to 
ensure the successful execution of rescue operations and minimize losses 
and negative impacts when dealing with major risk events [1]. In recent 
years, with the increased frequency of major risk events at both global 
and local regional levels, such as the COVID–19 pandemic and Hurricane 
Hilary in the United States, the lives and safety of humanity have been 
threatened significantly [2]. These unprecedented severe challenges 
presented higher requirements for the current EMSS to cope with 
increasingly complex risk scenarios, meet the demand for diverse 
emergency supplies, improve emergency response timeliness, and alle
viate pressure on emergency resource allocation [3].

Resilience is a multidisciplinary concept that can describe the degree 
to which a system can adapt to change by absorbing recurring pertur
bations and dealing with risks while maintaining its key properties [4]. 

Many countries have consistently underscored the significance of resil
ience in managing major risks, asserting its applicability in various as
pects, including the EMSS [5,6]. In China, resilience serves as a crucial 
benchmark in characterizing the comprehensive capacity of the EMSS to 
withstand the impact of risk outbreaks, maintain its normal functioning 
during the risk diffusion process, and adapt to uncertain environmental 
changes following dissipation of the immediate risk [7,8]. Therefore, an 
EMSS resilience assessment is particularly important to clarify the 
resilience profile and identify weaknesses and thereby support resilience 
improvement. This not only relates to the basic survival needs of dis
aster–affected populations but also impacts the safety of entire countries 
at large.

However, studies on EMSS resilience, especially the quantitative 
ones, remain relatively sparse, predominantly centered on discussing its 
necessity and significance qualitatively [9]. In contrast, resilience 
assessment studies in other fields have garnered more areas of focus, 
such as urban resilience [10] and supply chain resilience [11]. These 
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studies contribute to clarifying resilience concepts, refining the assess
ment criteria, and developing assessment methods, which can provide 
valuable theoretical and methodological insights for the current study. It 
is crucial to highlight that EMSS resilience assessment faces significant 
challenges due to the following three inherent features. 

(1) Multiple stakeholders. The EMSS is a complex system involving 
government departments, enterprises, social organizations, and 
community residents. There are significant differences among 
different stakeholders as to the claims of EMSS resilience [12]. 
For government departments, the emphasis is on strengthening 
the capacity building of EMSS resilience to cope with major risk 
events through top–level design and institutional arrangements, 
such as formulating emergency response plans and establishing 
joint–action mechanisms [13]. For enterprises, leveraging their 
industrial chain advantages and optimizing the capacity layout of 
key materials are their primary concerns in terms of EMSS resil
ience [14]. For social organizations, such as the Red Cross, the 
focus is on developing volunteer networks and engaging in 
emergency response training to build EMSS resilience [15]. For 
community residents, increasing the stockpile of emergency 
supplies in homes, participating in emergency drills, and 
enhancing mutual aid to support EMSS resilience are essential 
aspects [16]. Due to differences in the understanding of resilience 
among different stakeholders, their opinions on EMSS resilience 
may, therefore, show some uncertainty [17]. Unfortunately, the 
fuzzy set (FS) theory used to quantify the uncertainty in existing 
studies struggles to deal with multi–source fuzzy information 
[18]. Especially when the EMSS is required to cope with major 
risk events, the inadequacy of risk information and incomplete 
emergency supply–demand information can cause different 
stakeholders to hesitate in their resilience assessment [19]. As a 
new extension of FS theory, the hesitant fuzzy set (HFS) theory 
can capture a broader range of information from different deci
sion–makers more effectively [20]. Therefore, developing an 
HFS–based method to reduce the uncertainty caused by stake
holders’ hesitation, thereby forming a comprehensive assessment 
of EMSS resilience, is a significant challenge that needs to be 
addressed.

(2) Multiple stages. The operation of the EMSS involves various 
interconnected stages, such as demand estimation, material 
procurement, warehouse management, logistics, and distribu
tion. For instance, the results of demand estimation influence 
procurement decisions directly, while warehouse layout de
termines the choice of distribution routes. Focusing dispropor
tionately on or neglecting certain stages may distort the resilience 
assessment results, impacting the specificity and effectiveness of 
resilience improvement efforts. Therefore, an effective assess
ment of EMSS resilience must synthesize the various stages and 
cover the entire process of risk response. Existing EMSS studies 
mainly focus on certain stages of major risk events, including 
analyzing distribution mechanisms for emergency materials [21], 
selecting storage sites for emergency materials [22], and opti
mizing emergency procurement cost and inventory [23]. While 
these studies address specific operational challenges, the scholars 
involved often treat stages in isolation rather than examining 
their dynamic interrelationships. This fragmented mode fails to 
capture the holistic nature of EMSS operations and may lead to 
suboptimal resilience strategies.

(3) Dynamic evolution. The multi–stage feature of EMSS operations is 
further complicated by its dynamic evolution across different risk 
scenarios and timeframes. EMSS resilience is manifested not only 
in its immediate response to risk events but also in its capacity for 
recovery and adaptation in the face of continually changing risk 
scenarios [24]. The inherent dynamic evolution of EMSS resil
ience arises primarily from the uncertainty and variety inherent 

in these risk scenarios [25]. For example, in a natural disaster risk 
scenario such as an earthquake, rapid deployment of materials 
and restoration of transportation are critical [26]. Conversely, in 
a public health emergency like an epidemic, the capabilities for 
warning of risks and forecasting demand become crucial [27]. In 
various risk scenarios, an EMSS must reallocate resources adap
tively to meet the specific needs of each scenario [28]. This dy
namic adaptation occurs not only across different risk scenarios 
but also evolves through time within a single event, from 
pre–event prevention to mid–event response and post–event re
covery. While the dynamic evolution of an EMSS across various 
risk scenarios is recognized, most existing studies tend to focus on 
specific or simplified risk scenarios and quantify resilience based 
on static analyses or data from a single point in time [29]. The 
assessment criteria systems are often developed on fixed analyt
ical logic and frameworks, such as “wuli–shili–renli” [30] and 
“pressure–state–response” [31]. These methods may struggle to 
capture the dynamic interplay between stages and the evolving 
feature of resilience across different phases of risk events.

Therefore, the limitations of current studies become particularly 
evident when considering both the multi–stage feature and dynamic 
evolution of EMSS resilience. Existing studies mainly focus on the static 
analysis framework of “task–response” in major risk events [32], which 
addresses isolated operational challenges but fails to capture the com
plex mechanisms of risk generation, development, and response across 
the entire EMSS lifecycle. This fragmented perspective hinders an 
in–depth understanding of how scenario–specific demands translate into 
governance tasks and how system capabilities must be dynamically 
aligned to meet these demands. Consequently, there is a critical need for 
a more comprehensive analytical framework that can simultaneously 
address the interconnected stages of EMSS operations and their dynamic 
evolution across diverse risk scenarios. The “scenario–task–capability” 
framework offers such a perspective by establishing clear relationships 
between scenario elements, task requirements, and capability responses, 
thereby providing a more holistic and dynamic mode to EMSS resilience 
assessment.

To address these challenges, a novel data–intelligence–driven 
three–stage dynamic model for EMSS resilience assessment was devel
oped. In Stage 1, a large language models (LLMs)–enhanced named 
entity recognition model was proposed for risk event extraction. The 
proposed model can process multi–source text data and integrate 
domain–specific expert knowledge to extract and analyze risk events. 
This stage lays the groundwork for understanding and constructing 
dynamic risk scenarios. In Stage 2, a 〈I–N–C–A〉 ontology representa
tion–based model was proposed for risk scenario construction to trans
form risk events into structured scenario elements. This model captures 
the interrelations between issues, nodes, constraints, and annotations 
within risk scenarios, enabling the depiction of dynamic interactions in 
EMSS. Based on these structured scenarios, resilience features were 
identified through a “scenario–task–capability” analysis framework, 
which clarified the alignment between risk scenarios, governance tasks, 
and the system capabilities. This provides a construction foundation for 
a hierarchical system of assessment criteria. In Stage 3, a dynamic hes
itant fuzzy matter–element extension (DHF–MEE) model was proposed 
to conduct a feature–matching quantitative assessment for the profile of 
EMSS resilience by measuring and aggregating the performance of each 
criterion at each time point, which was obtained from multi–expert 
knowledge. The classic MEE model was extended to a dynamic hesitant 
fuzzy environment, aiming to more accurately reflect the experts’ dif
ferences of opinions and hesitant attitudes in the resilience assessment 
process. The developed data–intelligence–driven three–stage dynamic 
model enabled us to conduct EMSS resilience assessment based on 
multitime–point features, multidimensional criteria, and multi–source 
heterogeneous data, effectively catering for the involvement of multiple 
stakeholders, multiple stages, and dynamic evolution. It overcomes 
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limitations in existing frameworks by enabling robust and dynamic 
assessment, addressing decision–making uncertainties and providing 
actionable insights for resilience improvement.

The remainder of this paper is organized as follows. Section 2 re
views the existing studies, reveals the research gaps, and sets out our 
contribution. Section 3 details the framework of the developed data
–intelligence–driven three–stage dynamic model, including the pro
cesses of risk event extraction, resilience feature recognition, and 
resilience quantitative assessment. Section 4 elaborates on the devel
oped model for EMSS resilience assessment. Section 5 demonstrates the 
applicability of the developed model through a case study. Section 6
summarizes the conclusions and presents a roadmap for future work.

2. Literature review

In this section, existing studies on resilience assessment methods and 
risk scenario construction are reviewed. Subsequently, the research gaps 
are discussed, and our contribution is set out.

2.1. Resilience assessment methods

Current studies on resilience assessment focus primarily on system 
performance, emphasizing the assessment of how resilient a given sys
tem is. Resilience assessment methods mentioned in these studies can be 
classified into four categories. 

(1) Deterministic methods assume the known or fixed states and pa
rameters of a system. These methods are appropriate for situa
tions where the effects of major risk events are well–defined, and 
resilience is quantified by changes in system performance before 
and after major risk events. Zobel [33] quantified resilience by 
calculating the ratio of the total loss within a certain interval after 
a disaster to the system’s performance under normal conditions. 
Henry and Ramirez–Marquez [34] described the system’s pro
gression through three states: stable initial state, disrupted state, 
and stable recovery state, and quantified the system’s resilience 
by calculating the ratio of recovery to loss. However, the deter
ministic methods fail to consider the uncertainties inherent in 
systems [35], thereby rendering them less effective for analyzing 
complex real–world scenarios.

(2) Probabilistic methods account for the inherent uncertainties in 
systems. These methods are particularly effective for systems 
whose states and parameters are indeterminate or prone to sub
stantial variation, and probability distributions are often used to 
model and quantify system resilience against major risk events. 
Chen et al. [36] analyzed the uncertainties during the disruption 
and mitigation phases and applied the Monte Carlo method to 
assess the resilience of chemical plants. Tong and Gernay [37] 
examined the uncertainty associated with cascading events and 
used dynamic Bayesian networks to conduct resilience assess
ments in the facilities industry. Although probabilistic methods 
are adept at addressing system uncertainties, they depend 
extensively on comprehensive historical data and statistical an
alyses [38]. In addition, they confront challenges such as data 
scarcity, inconsistency, or inadequacy, and the difficulty of 
identifying appropriate probabilistic models and parameters 
persists [39].

(3) Simulation–optimization methods can address the complexity of 
system structures and behaviors alongside various potential dis
turbances and corresponding response strategies. Herein, 
agent–based modeling (ABM) and robust optimization techniques 
are often used, enabling the simulation of system responses to 
diverse risk scenarios and providing a flexible model for a resil
ience assessment of complex systems. Sun et al. [40] applied ABM 
to project the functional trajectory of road networks during re
covery phases after major risk events and analyzed system 

resilience using different restoration methods. Parast et al. [41] 
developed a multi–objective three–stage robust stochastic opti
mization model, in which deep learning is leveraged to simulate 
social behaviors and conduct a resilience assessment of micro
grids and distribution systems. While simulation–optimization 
methods have significant advantages in assessing system resil
ience, they require substantial computational resources, espe
cially for large–scale or highly complex systems [42]. Inadequate 
agent behavioral parameters and rules can lead to models that fail 
to reflect real–world dynamics accurately, particularly when 
facing new types of previously unencountered risk events [43].

(4) Criterion–based methods concentrate on the attributes or functions 
of a system and emphasize how to make a system more resilient. 
In these studies, resilience is often assessed by establishing a set of 
specific criteria, making the assessment process more concrete 
and actionable. Huang et al. [44] identified the key criteria of 
urban resilience through a literature review and the Delphi 
method and analyzed their influence mechanisms using the 
decision–making trial and evaluation laboratory (DEMATEL) and 
interpretive structural modeling (ISM) with criteria data sourced 
from surveys of industry experts. Liu et al. [45] developed a 
criterion system for urban resilience assessment incorporating 
aspects such as social and ecological perspectives and employed 
night lights data to analyze the weighted average of each crite
rion empirically through four historical earthquake cases. Jaafari 
et al. [18] categorized social resilience into five facets: social 
recovery, economic recovery, institutional recovery, and infra
structure recovery, and identified 31 resilience criteria. Wang 
et al. [46] established a multicriteria resilience assessment model 
for urban power systems based on the physical–network–human 
model.

While these criterion–based methods provide a structured and 
practical framework for resilience assessment, they face a significant 
challenge when applied to complex systems like the EMSS: the inherent 
uncertainty and hesitation in expert judgments. In real–world scenarios 
involving multiple stakeholders and dynamic risks, decision–makers 
often struggle to assign a single, precise value to a criterion due to 
incomplete information, diverse perspectives, or conflicting evidence 
[47]. This subjectivity can undermine the accuracy and reliability of the 
assessment results. To address this limitation, scholars have increasingly 
turned to fuzzy set (FS) theory, proposed by Zadeh [48], which allows 
for the representation of vague or imprecise information. However, 
traditional FS theory, which assigns a single membership degree, is 
insufficient for capturing the full spectrum of expert opinion in group 
decision–making. Recognizing this, Torra [49] introduced Hesitant 
Fuzzy Set (HFS) theory as a powerful extension. HFS theory permits 
decision–makers to express their assessment using a set of possible 
membership values for a single criterion, thereby directly modeling their 
hesitation and capturing multiple potential viewpoints [50,51].

The HFS theory provides a robust solution for addressing resilience 
assessment challenges in complex decision–making environments. For 
example, Luo et al. [52] combined HFS theory with prospect theory to 
evaluate flood resilience plans, effectively mitigating uncertainties from 
subjective biases. Alimohammadlou and Khoshsepehr [53] employed 
HFS theory in a multicriteria model for resilient supplier selection, 
allowing experts to provide multiple potential assessments and reducing 
model oversimplification errors. Bu et al. [54] refined the DEMATEL 
model using HFS theory to more precisely identify critical features in 
subway system resilience, thereby improving the analysis of complex 
interactions and reducing biases from expert subjectivity. These studies 
affirm the adaptability of HFS theory for resilience assessment in com
plex decision–making environments, highlighting its effectiveness in 
managing decision uncertainty and elevating the quality of the deci
sion–making process.

Table 1 provides a comparative summary of representative studies 
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across the four categories of resilience assessment methods, highlighting 
key aspects such as data type, dynamic support, and uncertainty 
handling. This comparison reveals that while existing methods offer 
valuable frameworks, the complexity of an EMSS resilience assessment 
stems not only from its multiple stakeholders and multiple inter
connected stages but also from the diverse and dynamically changing 
risk events to which it is exposed. The diversity and dynamics of risk 
events, the magnitude of their impacts, and their evolutionary paths 
make it difficult for traditional resilience assessment methods to address 
the challenges that an EMSS faces in practice.

2.2. Risk scenario construction

Risk response plays a crucial role in advancing the modernization of 
national security systems and capabilities [55]. In the policy document 
released by the China State Council [8], major risk response is divided 
into three stages: pre–event, in–event, and post–event. When major risk 
events occur, decision–makers in the previously mentioned stakeholders 
must swiftly enact measures to mitigate the adverse effects of major risk 
events and reinstate the functionality of the EMSS. Nowadays, some 
models have been developed by scholars to address the risk response 
problem in major risk events from different perspectives, such as the 
three–stage risk–averse and risk–neutral stochastic optimization model 
[56], and the adaptive robust optimization model [57]. These models 
are typically built on specific assumptions and have high computational 
complexity [58]. In practice, the outbreak of risk events might be more 
complex or undefined, potentially limiting these models’ ability to fully 
capture all the features of risk events. Furthermore, the high computa
tional complexity may hinder the application of these models in risk 
scenarios that require a rapid response. To address the time–sensitivity 
issue, some scholars have applied the case–based reasoning (CBR) model 
[59]. The CBR model offers rapid decision support by leveraging his
torical data and actual cases. Nevertheless, given the unpredictability 
and relative rarity of major risk events, applying the CBR model faces 
challenges due to the extremely limited extant repository of historical 
experiences and reliable cases.

The dynamic nature of major risk events makes the risk responses 
meet the requirements of high adaptability and flexibility. The con
ventional “task–response” process, constrained by a scarcity of deci
sion–making data, suffers from an overreliance on historical experiences 
and actual cases, making it difficult to adapt dynamically to the 
complexity and variability of major risk events [60]. Scenario con
struction is a common method in risk management, which is beneficial 
to understanding the complexity and uncertainty of major risk events as 
well as depicting and assessing their evolution. Existing research has 
explored various methods for scenario construction, which can be 
broadly categorized into qualitative and quantitative approaches. 

Qualitative methods, such as expert judgment and narrative–based 
techniques, are particularly effective in scenarios with high uncertainty 
or limited data. Expert judgment, often combined with brainstorming, 
leverages collective expertise to generate diverse risk scenarios by 
identifying key drivers and uncertainties. For instance, Deep and Dani 
[61] demonstrated how expert–driven scenario construction can un
cover potential disruptions and inform strategic responses. Similarly, 
narrative methods, such as storytelling, enhance the visualization and 
comprehension of risk scenarios. Ringland [62] emphasized that story
telling constructs detailed narratives that depict potential risk events, 
enabling stakeholders to intuitively grasp the implications of complex 
scenarios. Rodgers et al. [63] employed storytelling to construct earth
quake scenarios, helping people intuitively understand earthquake risks 
and preparedness techniques to reduce the destruction and conse
quences caused by earthquakes.

In contrast, quantitative methods rely on mathematical models and 
data–driven analyses to construct and evaluate risk scenarios, offering 
precision in predictive and optimization tasks. Stochastic pro
gramming–based scenario analysis is a widely adopted approach in 
supply chain resilience research. This method constructs multiple risk 
scenarios and optimizes decisions to enhance system robustness. Rosh
ani et al. [64] employed a two–stage stochastic programming model to 
design resilient supply chain networks, where initial decisions are made 
under uncertainty, followed by scenario–specific adjustments. While 
effective for proactive and reactive strategies, this approach faces 
challenges due to high computational complexity, which escalates with 
the number of scenarios, as noted by Sabbaghtorkan et al. [32]. Another 
promising quantitative method is ontology–based scenario construction, 
particularly suited for emergency management. Qian and Liu [66] 
proposed a framework that structures disaster knowledge into onto
logical elements, using an element–object–consequence (EOC) model to 
quantify scenario severity. By normalizing attributes and calculating 
weighted impacts, this method provides a structured and reusable rep
resentation of complex risk scenarios, as demonstrated in a case study on 
low–temperature freezing rain disasters affecting highways.

Despite these advances, existing studies on EMSS mostly focus on 
specific task solutions and response measures. This research paradigm 
lacks comprehensive consideration and may fail to provide a deeper 
understanding of the demands, constraints, and objectives of EMSS 
resilience in different risk scenarios and at different risk response stages. 
For example, Ye et al. [65] and Xing et al. [23] contributed to the task of 
emergency procurement costs and inventory optimization before risk 
event outbreaks with risk scenarios of natural disasters and supply chain 
risk management, respectively. However, the applicability and flexi
bility of these optimization strategies may be limited when facing 
different risk scenarios or other risk response stages. Broadening the 
research framework to scenario–task–capability is beneficial to identify 

Table 1 
Comparisons of resilience assessment methods.

Method Category Specific Methods Data Type Dynamic 
Support

Uncertainty Handling

Deterministic methods Parameter–adjusted resilience function [33] Expert judgment data No No
Time–dependent resilience function with recovery 
ratio calculation [34]

System performance data Yes No

Probabilistic methods Dynamic Monte Carlo [36] Industrial facility data Yes Time-dependent conditional 
probabilities

Dynamic Bayesian networks [37] Industrial facility data Yes Monte Carlo simulation
Simulation–optimization 

methods
Agent–based modeling [40] Infrastructure network data Yes Monte Carlo simulation
Hybrid robust–stochastic optimization [41] Power system operational data, 

social behavior data
Yes Two-stage stochastic 

optimization
Criterion–based methods DEMATEL–ISM [44] Expert judgment data No No

Entropy weight method [45] Socio-economic, remote sensing data No No
Fuzzy AHP [18] Socio-economic data No Fuzzy AHP for expert 

assessment uncertainty
Hesitant Fuzzy TOPSIS [46] Power system data, expert judgment 

data
No HFSs for expert assessment 

uncertainty
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and strengthen the key capabilities of EMSS in dealing with complex and 
constantly changing major risk events. Meanwhile, a holistic perspective 
based on the whole process of risk response also provides strong support 
for the identification of EMSS resilience weaknesses and key improve
ment elements.

2.3. Research gaps and our contribution

As previously mentioned, resilience is deemed an intuitive presen
tation of EMSS’s comprehensive capacity in response to major risk 
events, which helps stakeholders clarify the overall situation of system 
efficacy. Although existing studies provide a preliminary framework and 
methodology for EMSS resilience assessment, they still show some lim
itations in the following aspects. 

(1) Regarding the construction of criterion systems, existing studies 
often construct criterion systems through a static “task–response” 
logic, relying on predefined resilience criteria derived from 
expert intuition or generic frameworks. This priori mode lacks 
traceable linkage to the dynamic, heterogeneous, and evolving 
nature of real–world risk scenarios, failing to capture the full 
process of EMSS risk response and undermining the adaptability 
and contextual relevance of resilience assessment.

(2) Regarding the information depiction of criterion performance, 
existing studies have not mentioned or sufficiently depicted EMSS 
demand for resilience development when confronted with com
plex risk scenarios, and it is difficult to effectively manage un
certain information and hesitancy in complex decision–making 
environments. This restricts an in–depth understanding of EMSS 
resilience features and reduces the accuracy and reliability of 
resilience assessment.

(3) Regarding the temporal representation of criterion performance, 
existing studies often model resilience based on static or single
–time–point data, failing to construct the profile of EMSS resil
ience. These studies struggle to depict the resilience profile as it 
adapts through distinct phases, lacking the ability for tracking 
and retrospective analysis of the resilience profile, which makes it 
difficult to identify weaknesses in specific stages of the EMSS.

To overcome these limitations, this paper proposes a data
–intelligence–driven three–stage dynamic model for EMSS resilience 
assessment, which can address and reflect more accurately the 
complexity and dynamic changes in the decision–making environment. 
The main contributions are summarized as follows. 

(1) More intelligent risk event extraction for EMSS resilience. A risk 
event extraction model is developed using advanced methods like 
BERT–BiLSTM–CRF, enhanced by LLMs. This model integrates a 
closed–loop annotation mechanism involving LLM–generated 
annotations, cross–validation with alternative models, and expert 
reviews. This iterative process significantly enhances annotation 
accuracy, improves the reliability of risk data while accelerating 
the extraction process, and ensures robust extraction of risk 
events from multi–source text data. This will provide a robust 
foundation for constructing realistic and dynamic risk scenarios.

(2) More scientific scenario construction for EMSS resilience. Using 
the proposed ontology–based model, multi–source text data on 
major risk events are organized and abstracted into ontological 
hierarchies and relationships to construct a risk scenario library 
of EMSS based on multi–expert knowledge. This will provide a 
clear description and analysis of the risk scenarios faced by EMSS 
resilience.

(3) More accurate feature quantification for EMSS resilience. A sce
nario–driven approach is adopted to extract resilience features 
from systemic analyses of diverse real–world risk scenarios, with 
inputs from multi–expert knowledge. Subsequently, a 

hierarchical criterion system matching the extracted features is 
constructed to characterize and quantify EMSS resilience. This 
will provide comprehensive guidance for an EMSS resilience 
assessment and be beneficial in ensuring the accuracy of assess
ment results.

(4) More multifaceted result presentation for EMSS resilience. Using 
the proposed DHF–MEE model, the profile of EMSS resilience is 
constructed by synthesizing multi–expert knowledge data across 
multiple critical time points. Meanwhile, the uncertainty in the 
process of EMSS resilience assessment is also overcome effec
tively. This will provide an important basis for stakeholders to 
recognize EMSS resilience and improve the problem–solving 
effectiveness of EMSS resilience assessment.

3. Framework

In this section, a three–stage framework is constructed to support 
EMSS resilience assessment (see Fig. 1). A brief description of each stage 
is presented below. 

(1) Stage 1: Risk event extraction

The main work of stage 1 is to extract and analyze risk events to 
support the subsequent scenario construction. Specifically, this stage 
involves the preprocessing of multi–source text data, the annotation and 
extraction of risk events, and the analysis of causal relationships be
tween events.

First, data sources are determined, and multi–source text data are 
collected to construct a corpus. During data preprocessing, the text 
undergoes cleaning and normalization, including removing irrelevant 
content, tokenization, synonym replacement, and stop–word filtering. 
These steps ensure that the data is structured and suitable for subsequent 
analysis.

Second, a risk event annotation module enhanced by LLMs is con
structed. Professionalized prompts are designed to leverage the capa
bilities of the models to understand risk text data and automatically 
annotate entities within the text. To ensure the reliability of the anno
tations, cross–validation is performed using another LLM to verify 
whether the annotated segments match the original text and identify any 
potential inconsistencies. The annotated results are reviewed by domain 
experts, whose feedback is used to refine the prompts and annotation 
rules, further enhancing the accuracy and reliability of the annotation 
process. A closed–loop annotation mechanism is established, consisting 
of LLM–generated annotations, validation, expert revision, and iterative 
optimization of annotation rules. This creates an efficient annotation 
system. After multiple rounds of validation, a high–quality training 
dataset suitable for named entity recognition (NER) tasks is generated to 
train the BERT–BiLSTM–CRF model.

Furthermore, the BERT–BiLSTM–CRF model is used to extract event 
entities from the corpus and construct an event library. Dependency 
syntax analysis is applied to identify causal relationships between 
events, constructing event linkage graphs (ELGs) to validate the con
nections between entities. It can reveal the mutual influences and causal 
chains among different risk events, providing robust data support for the 
construction of risk scenarios. 

(2) Stage 2: Resilience feature recognition

The main work involved in this stage is to construct EMSS risk sce
narios, identify key features of EMSS resilience, and develop a hierar
chical multidimensional criterion system for EMSS resilience 
assessment.

First, to provide a comprehensive understanding of EMSS risk 
response capabilities under different risk scenarios, as well as to provide 
insights into the characterization of EMSS resilience, scenario con
struction methods are employed to capture and analyze the dynamic 
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changes and complexities of EMSS risk scenarios. Ontology representa
tion provides rich semantic support for in–depth analysis of complex risk 
scenarios [66], showing higher flexibility and scalability in handling 
multi–source information. Therefore, the 〈I–N–C–A〉 ontology repre
sentation is used to construct a risk scenario library. Based on the event 
library constructed in Stage 1, the ontology model abstracts risk events 
into ontological concepts, transforming them into structured scenario 
elements to construct the risk scenario library. This library abstracts and 
organizes multiple risk events into dynamic scenarios, illustrating their 
evolution and associations with response strategies, while providing a 
structured and systematic basis for resilience assessment.

Second, based on the constructed risk scenario library, core scenarios 
related to EMSS risk response are extracted from the risk scenario li
brary. Thus, the key nodes and response mechanisms in EMSS risk sce
narios are captured. The set of scenario elements in the risk scenario 
library that are consistent with the characteristics of EMSS risk response 
objectives is located, and the scenario element representation to 
compose EMSS risk scenarios with certain causal and temporal re
lationships are extracted.

Then, the EMSS risk scenarios are systematically analyzed to un
derstand the EMSS risk response modes and strategies under different 

risk scenarios from the analysis framework of “scenario–task–cap
ability”. Combining case studies and expert insights, we identify features 
of EMSS resilience, determine the key dimensions and criteria required 
for EMSS resilience assessment, and form a hierarchical multidimen
sional criterion system to characterize and quantify EMSS resilience. 

(3) Stage 3: Resilience quantitative assessment

The main work involved in this stage is to develop the DHF–MEE 
model, which can perform dynamic assessments of EMSS resilience at 
multiple time points in an uncertain decision–making environment. 
Also, the model aims to reveal potential weaknesses in EMSS resilience 
and identify key features for resilience improvement.

First, the model incorporates the HFS theory to address the uncer
tainty and hesitation in the resilience assessment process. This theory 
allows experts to provide multiple possible assessment values for the 
same criterion, thereby quantifying their hesitant opinions. By inte
grating the hesitant fuzzy assessment of various criteria within the hi
erarchical criterion system of EMSS resilience assessment from different 
experts, a data foundation is provided for the quantitative assessment of 
EMSS resilience.

Fig. 1. Three–stage framework for EMSS resilience assessment.
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Second, the classic MEE model is extended to a hesitant fuzzy envi
ronment, thus proposing the DHF–MEE model suitable for EMSS resil
ience assessment. The proposed model aggregates multiple time points 
of hesitant fuzzy assessment information by constructing hesitant fuzzy 
matter–elements and dynamically assesses the EMSS resilience by 
calculating the extension correlation between these elements and pre
defined resilience levels.

Finally, based on the output of the DHF–MEE model, EMSS resilience 
can be classified into corresponding resilience levels. By comparing the 
correlation between various criteria and the ideal state of resilience, the 
model can be used to precisely identify key features for EMSS resilience 
improvement and the current weakness. This analysis not only reveals 
the current level of EMSS resilience but also provides decision support 
for formulating specific improvement strategies.

4. Methodology

In this section, a data–intelligence–driven three–stage dynamic 
model for EMSS resilience assessment is developed, in which the three 
stages involved are risk event extraction (Stage 1), resilience feature 
recognition (Stage 2) and resilience quantitative assessment (Stage 3). 
The details of the proposed model are elaborated to support the main 
work of each stage.

4.1. LLMs–enhanced NER model for risk event extraction

To enable efficient extraction of risk events from multi–source text 
data, a BERT–BiLSTM–CRF model and an LLMs–based annotation 
module are developed. This subsection outlines the design and appli
cation of these methods.

4.1.1. BERT–BiLSTM–CRF model for the NER task
NER is an important task in information extraction, aiming at iden

tifying entity information (e.g., names of people, places, organizations, 
etc.) with specific meaning from unstructured data [67]. In NER tasks, 
the BERT–BiLSTM–CRF model integrates contextual semantic modeling, 
sequence dependency capture, and global optimization strategies, 
enabling efficient extraction of contextual information and annotation 
of sequence features. In this study, the BERT–BiLSTM–CRF model is 
employed for extracting risk events, incorporating the following three 
core components. 

(1) BERT embedding layer: Deep contextual representation

To fully capture the contextual information of the text input, the 
model utilized BERT (Bidirectional Encoder Representations from 
Transformers) to generate contextualized word embeddings. Given an 
input sequence x = {x1, x2, ..., xn}, BERT produces a sequence of word 
embeddings E = {e1,e2,...,en}, where ei ∈ Rd represents the embedding 
of the i th word in a D-dimensional space: 

E = BERT(x). (1) 

The bidirectional encoding mechanism of BERT enables it to capture 
deep semantic features and contextual dependencies, providing a rich 
feature representation for downstream sequence modeling. 

(2) BiLSTM layer: Precise sequential dependency modeling

Following BERT embeddings, the model employs a BiLSTM (Bidi
rectional Long Short–Term Memory) network to further model sequen
tial dependencies and long–range relationships within the input 
sequence. BiLSTM extracts sequential features in both forward and 

backward directions. The forward hidden state h
→

i and the backward 

hidden state h
←

i are concatenated to form the final feature representation 
hi at each time step. 

hi =

[

h
→

i; h
←

i

]

,H = {h1,h2, ...,hn}, (2) 

where [⋅; ⋅] denotes the concatenation operation. By capturing both local 
and global sequential dependencies, BiLSTM complements BERT’s 
ability to model patterns across long–range contexts. 

(3) CRF layer: Global optimization for label dependencies

To ensure global consistency in the predicted label sequence, the 
model integrates a conditional random field (CRF) layer at the output. 
The CRF layer models the interdependencies between adjacent labels to 
optimize the sequence–level predictions. For a given label sequence y =
{
y1,y2, ...,yn

}
, the CRF layer assigns a score s(y,H) based on: 

s(y,H) =
∑n

i=1
Wyi− 1 ,yi +

∑n

i=1
hT

i Wyi . (3) 

Here, Wyi− 1 ,yi represents the transition score between labels yi− 1 and 
yi, while hT

i Wyi denotes the emission score from BiLSTM outputs to the 
labels. For the first position (i = 1), y0 is a predefined start label. The 
optimal label sequence is determined by maximizing the conditional 
probability: 

y∗ = argmax
y

P(y|x) = argmax
y

exp(s(y,H))
∑

yʹexp(s(yʹ,H))
. (4) 

The entire model is trained end–to–end by minimizing the negative 
log–likelihood (NLL) loss: 

L = − logP(y|x). (5) 

This training framework not only leverages the pre–trained contex
tual knowledge of BERT but also captures task–specific sequential pat
terns through BiLSTM and optimizes global label distribution using the 
CRF layer. By integrating these three components, the 
BERT–BiLSTM–CRF model effectively captures complex patterns in risk 
text corpora, enabling robust extraction of relevant risk events. In event 
analysis, this study employs the dependency syntax analysis method 
proposed by Chen and Manning [68] to construct ELGs, which visualize 
and validate the intrinsic connections and interactions among risk 
events. This method facilitates understanding the evolution of different 
risk scenarios and their impact on EMSS, providing solid data support for 
constructing future EMSS risk scenarios.

4.1.2. LLMs–based module for text annotation
In the early stages of NER tasks, scholars primarily relied on tradi

tional rule–based and template–based methods. However, these 
methods were often limited to specific domains and required extensive 
expert labor, making them increasingly obsolete. With the rise of deep 
learning technologies, neural network–based NER methods have 
significantly improved model performance. These methods leverage the 
powerful computational capabilities of neural networks to automatically 
learn high–dimensional latent semantic information, thereby reducing 
dependence on manual feature engineering. In recent years, the devel
opment of LLMs, such as ChatGPT, has further advanced progress in NER 
tasks. With larger parameter sizes, LLMs have demonstrated great per
formance in NER tasks [69]. However, LLMs are essentially generative 
models with hallucination problems and limited adaptability to domain 
tasks, and their performance on NER tasks is still much lower than su
pervised baselines [70]. Therefore, it is difficult to achieve the desired 
results by directly using LLMs for risk event extraction.

Although LLMs cannot directly replace supervised learning models 
for NER tasks, they possess powerful natural language understanding, 
generation, and information extraction capabilities, and coalesce a rich 
knowledge base based on large–scale corpora, providing new possibil
ities for efficiently generating labeled data. In NER tasks, the quality and 
scale of annotated data are crucial to the performance of the model, 
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while the traditional manual annotation approach is time–consuming 
and laborious, and the annotation cost is more significant, especially in 
tasks with high domain knowledge requirements. Meanwhile, prompt is 
the bridge connecting the LLMs and application, and the good or bad use 
of prompt directly affects the final performance of the big model [71]. 
To address these challenges, this study expands the application of 
LLMs–based systems and proposes a simple and effective module for text 
annotation based on LLMs (see Fig. 1) to support risk event extraction 
tasks. The integration of LLMs is primarily motivated by their pre
training on large–scale corpora, which enables them to comprehend 
complex contextual semantics and infer potential entity categories 
within the text [72]. By designing refined prompts, the framework 
guides the model to understand and annotate target entities in the text. 

(1) Label list 
The label list specifies the core entity categories to be identified 

in risk events and their detailed definitions. The design of each 
label aligns with the specific characteristics and objectives of the 
task, ensuring coverage of critical elements such as causes of the 
event, affected objects, environmental conditions, and time and 
location. This provides a clear categorical framework for the 
annotation task.

(2) Annotation rules 
Annotation rules standardize the annotation behavior of LLMs, 

including criteria for selecting entity fragments, handling of 
multiple fragments, and output formats in cases of no content. 
These rules are tailored to task requirements, ensuring accuracy, 
consistency, and formatted outputs for annotated results, thereby 
providing high–quality input data for subsequent NER model 
training.

Compared to traditional methods that rely entirely on manual 
annotation, the use of LLMs for generating annotated data significantly 
improves efficiency. It not only captures explicit information in the text 
but also extracts implicit semantic relationships through prompt guid
ance. Considering the potential “hallucination” issues that may arise 
during the annotation process, this study introduces a human–machine 
collaborative annotation mechanism, integrating LLMs’ automated an
notations with expert review to establish a closed–loop annotation 
optimization process. Specifically, the initial annotations generated by 
LLMs are first cross–validated using another large model to detect in
consistencies and potential errors. Subsequently, domain experts review 
and refine the annotations, with the revised results used to optimize 
prompt design. This closed–loop mechanism enables effective synergy 
between machine intelligence and domain expertise, thereby improving 
both the efficiency and accuracy of text annotation. Notably, it plays a 
critical role in addressing terminology ambiguity—a common challenge 
in the emergency management domain. When the LLM produces 
ambiguous or contextually incorrect annotations (e.g., interpreting “封 
锁” as a traffic control measure rather than a supply chain disruption), 
such instances are systematically identified and corrected during the 
expert review phase. The corrected annotations, along with the experts’ 
contextual justifications, are then fed back into the system to iteratively 
refine the prompting strategies and annotation rules. Through this 
iterative process, domain–specific knowledge is progressively inte
grated, enabling the framework to adapt to the nuanced use of technical 
terms. As a result, the mechanism functions not only as an annotation 
optimizer but also as a structured approach for active terminology 
disambiguation and knowledge incorporation.

Furthermore, the high–quality annotated data is used to train a 
BERT–BiLSTM–CRF model. This model, combining the knowledge 
augmentation capabilities of LLMs with the strengths of supervised 
learning, not only addresses the challenges of annotation efficiency and 
accuracy but also substantially improves the performance of NER in risk 
event extraction tasks. This provides an efficient and reliable solution for 
data annotation in complex domain–specific tasks.

4.2. Ontology–based scenario construction model for resilience feature 
recognition

To systematically capture and analyze dynamic risk scenarios, an 
ontology–based model is proposed to construct a structured risk scenario 
library and identify resilience features. This subsection details the sce
nario construction process and resilience feature recognition 
framework.

4.2.1. Risk scenario construction
To provide a comprehensive understanding of EMSS response ca

pabilities in different risk scenarios, and to provide insights into the 
characterization of EMSS resilience, scenario construction methods need 
to be used to capture and analyze the dynamic changes and complexities 
of EMSS risk scenarios based on multi–source text data and multi–expert 
knowledge. With the advantage of supporting the construction of 
semantically dense and highly expressive risk scenarios, the issues, 
nodes, constraints, and annotations (<I–N–C–A>) ontology represen
tation model [73,74] is developed to extract the risk scenario elements 
and construct a risk scenario library. By utilizing the model, core issues 
and key elements within risk scenarios can be systematically identified 
and organized. It allows for a precise expression of the interrelationships 
and constraints among various elements, thus facilitating the construc
tion of a risk scenario library. This structured scenario data support is 
essential for the subsequent extraction of resilience features, offering a 
systematic and detailed representation of the risk scenarios.

By employing the 〈I–N–C–A〉 ontology representation model, the 
complex risk scenarios faced by the EMSS are distilled into four funda
mental elements, namely, Issues, Nodes, Constraints, and Annotations. The 
formulation of each element is detailed as follows. 

(1) Issues 
These represent the meta–level characterization of risk events, 

functioning as the contextual framework that defines the scope 
and parameters of the entire scenario. The Issues element specifies 
the fundamental attributes of the risk scenarios—including its 
typological classification, spatiotemporal coordinates, and 
application domain—without detailing the internal structural 
components. It serves as the essential reference point that an
swers the questions of ‘what general type of event has occurred’, 
‘when and where it took place’, and ‘in what operational context 
it is situated’. This meta–perspective ensures consistent framing 
of diverse risk scenarios, enabling systematic comparison while 
maintaining conceptual separation from the intra–scenario en
tities analyzed at subsequent stages. The formal expression is 

Issues{ < id : I0001,
name : XXX,
type dis : COVID − 19,
time : ‘2020.1.6’,
address : ‘SCity’,
application : ‘Decision’
> ((attribute items [attribute − qualifiers]), value)},

(6) 

where “id” refers to the unique identifier of the issue; “name” 
denotes the designation of the risk scenario; “type_dis” specifies 
the risk event type; “time” records the timing of the occurrence of 
the risk event; “address” is the geographic location where the risk 
event occurs; and “application” indicates the domain of case 
applicability, which, in this instance, pertains to the safeguarding 
of emergency supplies.

(2) Nodes 
These represent the constituent entities operating within the 

contextual framework established by the Issues element, consti
tuting the interactive components that drive dynamic scenarios. 
Nodes are categorized into two distinct ontological types based 
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on disaster theory: hazard agents and vulnerable receptors. 
Crucially, Nodes represent the concrete entities within the event 
context, rather than the overarching event category itself. The 
formal expression is 

Nodes{ < id : N0001,
name : XXX,
type : (‘hazardagents’, ‘vulnerablereceptors’),
> ((attribute items[attribute - qualifiers]), value)},

(7) 

where “id” is the number assigned to the node; “name” is the 
name of the node; and “type” indicates the role of the entity in the 
scenario.

(3) Constraints 
These represent the normative scenario constraint elements 

that affect the selection of evolutionary paths for nodes during 
the development of the major risk events. These include rule 
constraints, response constraints, and time constraints, where 
time constraints are included in rule constraints and response 
constraints. The formal expression is  

where “id” is the constraint number; “name” is the constraint 
name; “rule constraints” are the constraints imposed by rules; 
“type” is the type of rule constraint; “elements” are the pairs of 
scenario elements that are affected by the rule constraints; “time” 
is the period that the rule constraints apply to; “response con
straints” are the constraints imposed by responses, mainly refer
ring to the emergency measures taken during the occurrence of 
the risk event; “people number” is the number of people involved 
in the response; “material resources” are the resources used in the 
response; “transportation” is the means of transportation used in 
the response; and “time” is the period to which the response 
constraints applies.

(4) Annotations 
These represent the scenario attribute elements of the nodes in 

the risk scenario, i.e., the collection of different performance 
carriers presented by nodes under constraints. Let h (h1, h2, …, 
hm) be the attribute list of hazard agents; for example, regarding 
an epidemic, these include the susceptible population, the 
infected population, and the incubation population. Let a (a1, a2, 
…, an) be the attribute list of vulnerable receptors; for example, 
regarding the material support infrastructure, these include 
physical elements, informational elements, and management el
ements. Each attribute is described by a tuple (values, timestamp), 
where values represents the specific values of the attribute and 
timestamp represents the effective date of the identified attribute. 

Taking the public health emergency as an example, the sce
nario covers a series of complex processes from the prediction of 
demand for emergency materials at the early stage of the 
outbreak of an infectious disease to the deployment and distri
bution of materials at later stages. In this scenario, “Issues” refer 
to the overarching description of the risk event itself, specifying 
the fundamental characteristics such as the event type (e.g., 
public health crisis), temporal and spatial parameters, and 
application domain; “Nodes” represent the specific entities that 
interact within the context defined by the Issues, including 

hospitals and emergency response teams as vulnerable receptors 
and material stockpiles as hazard agents; “Constraints” cover the 
operational limitations such as material variety, quantities, and 
distribution timelines; and “Annotations” denote the specific 
behaviors of these nodes and constraints within given spatial and 
temporal contexts. It is important to note that while the initial 
identification of these elements from textual data involves expert 
judgment, the structured 〈I–N–C–A〉 framework provides clear 
classification criteria that minimize subjective interpretation by 
distinguishing between the event’s defining characteristics (Is
sues) and the constituent entities within the events (Nodes). 
Through comprehensive modeling and analysis of the risk sce
nario, the resilience features of the EMSS against unforeseen 
public health emergencies are explored thoroughly to lay a sci
entific foundation for improving emergency material support 
strategies. The formal expression of the above four elements can 
be adjusted by adding or removing items as needed, while pre
serving the conceptual distinction between the scenario’s 
defining framework and its internal components, to ensure both 
flexibility and analytical consistency in risk scenario 

representation.

4.2.2. “Scenario–task–capability” analysis framework
The construction of the “scenario–task–capability” analysis frame

work is essential for addressing the dynamic interplay between risk 
scenarios, governance tasks, and system capabilities, particularly within 
the context of complex, multiple stakeholder systems like EMSS. As 
shown in Fig. 1, this analysis framework provides a systematic approach 
to understanding how risk scenarios lead to governance demands and 
how these demands are met through the alignment of tasks and 
capabilities.

The starting point of the framework is the risk scenario, which serves 
as the foundation for understanding potential losses and governance 
needs. Risk scenarios emerge from the interaction of hazard agents, 
hazard–prone environments, and vulnerable receptors, as depicted in 
Fig. 2. These elements collectively determine the type and scale of risk 
events faced by the EMSS. By systematically analyzing these scenarios, 
stakeholders can identify critical challenges and their implications, 
forming the basis for defining governance tasks.

Subsequently, the task identification process bridges the gap be
tween risk scenarios and the responses required to address them. 
Governance tasks are developed to mitigate potential losses and meet 
the demands arising from the identified scenarios. These tasks must be 
precisely defined and tailored to the characteristics of risk scenario, 
ensuring a targeted and effective response. Given that EMSS operates 
within a multiple stakeholder context, including government de
partments, enterprises, social organizations, and community residents, 
the framework for resilience feature recognition focuses on systemati
cally identifying and organizing resilience–related criteria by analyzing 
the diverse objectives and requirements of these stakeholders. This is 
achieved by abstracting dynamic risk scenarios into structured scenario 
elements and aligning them with governance tasks and system capa
bilities, ensuring that the final criterion system comprehensively reflects 
the multifaceted nature of EMSS resilience.

Furthermore, the framework emphasizes the critical role of capa
bility building in ensuring that the system can fulfill the identified 

Constraints{ < id : C0001,
name : XXX,
rule constraints : [type, elements, time],
response constraints : [peoplenumber,materialresources, transportation, time]},

(8) 
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governance tasks. The successful implementation of tasks depends on 
whether the system capabilities are aligned with the demands posed by 
risk scenarios. The framework thus guides the inductive identification of 
key system capabilities through the analysis of multiple, diverse risk 
scenarios. By synthesizing and comparing the tasks and required capa
bilities in different scenarios, the core resilience features of EMSS are 
extracted and constructed into a hierarchical criterion system for resil
ience assessment. Moreover, capability building is not only reactive but 
also forward–looking, as it underpins the system resilience by equipping 
it to handle future uncertainties and dynamic risks effectively.

4.3. Feature–matching DHF–MEE model for resilience quantitative 
assessment

To support the quantitative assessment for EMSS resilience in a dy
namic uncertain decision–making environment, a feature–matching 
DHF–MEE model is developed. This model leverages the resilience fea
tures extracted in the previous stages to build a robust and adaptable 
quantitative assessment framework. This subsection demonstrates the 
details of the DHF–MEE model and illustrates its application.

4.3.1. Definition of hesitant fuzzy matter element
The MEE model combines matter element and extension theories 

enabling the combination of complex criteria for comprehensive 
assessment, in which an ordered triad of “matter, feature, and value” is 
used to construct a “matter element” that describes the object to be 
assessed. Suppose that the EMSS resilience is N, the criterion set for 
EMSS resilience assessment is X, and the values of the criteria are V, then 
the basic matter–element R of the EMSS resilience can be expressed by 
the ordered triad: 

R = [N,X,V]. (9) 

As described previously, given the uncertainty that usually exists at 
the boundaries and levels of the criteria for an EMSS resilience assess
ment, traditional methods may not be enough to capture the dynamic 
uncertainty. To describe this uncertainty more completely, HFS theory is 
applied to extend the classic MEE model. Xia and Xu [50] provided a 
mathematical expression for HFS and introduced the concept of hesitant 
fuzzy elements (HFEs) to express the HFS more precisely. Let X =

{
x1,

x2, ..., xp
}

be a reference set, i.e., the criterion set for EMSS resilience 
assessment. A hesitant fuzzy set on X, denoted by A, is characterized by a 
function gA : X→ P ([0,1]), which returns a set of possible values for each 
element xi ∈ X. This HFS can be written in the following form: 

A = { < xi, gA(xi) > |xi ∈ X, i = 1, 2,…, p}, (10) 

where gA(xi) is called a HFE, representing the possible degrees to which 
xi belongs to the set A. When each HFE contains only one value, the HFS 
degenerates into a classical fuzzy set.

In the context of EMSS resilience assessment, assuming that the HFS 
of criterion set X is M, and the corresponding HFE of each criterion xi is 
denoted as m(xi), i = 1, 2, ..., p, the hesitant fuzzy matter element 
(HF–ME) of EMSS resilience can be expressed as follows: 

R = [N,X,M] =

⎡

⎢
⎢
⎣

N x1 m(x1)

x2 m(x2)

⋮ ⋮
xp m

(
xp
)

⎤

⎥
⎥
⎦. (11) 

The HF–ME allows the mapping of each assessment criterion to a 
collection of possible values rather than just a single value. By dealing 
with the uncertainty and hesitancy of information, the uncertainty and 
bias of experts can be reduced, thus improving the reliability and val
idity of the EMSS resilience assessment results.

4.3.2. Main procedures of the proposed DHF–MEE model
The main procedures of the proposed DHF–MEE model are illus

trated step by step. 

Step 1: Determine compound resilience DHF–ME.

Let the resilience level of EMSS at time t be Nt , t = 1,2,…,k, the HFE 
of each criterion xi at time t is mt(xi), i = 1,2, ...,p, then the compound 
DHF–ME Rpk of EMSS resilience is defined as 

Rpk =

[
N

X M

]

=

⎡

⎢
⎢
⎢
⎢
⎣

N1 N2 ⋯ Nk
x1 m1(x1) m2(x1) … mk(x1)

x2 m1(x2) m2(x2) ⋯ mk(x2)

⋮ ⋮ ⋮ ⋮ ⋮
xp m1

(
xp
)

m2
(
xp
)

⋯ mk
(
xp
)

⎤

⎥
⎥
⎥
⎥
⎦
. (12) 

Step 2: Determine the matter element to be assessed and the extension 
domain.

The ME of the EMSS resilience Nt at the time t to be assessed is 
defined as Rt. 

Rt =

⎡

⎢
⎢
⎢
⎢
⎣

Nt
x1 mt(x1)

x2 mt(x2)

⋮ ⋮
xp mt

(
xp
)

⎤

⎥
⎥
⎥
⎥
⎦
, t = 1, 2,…, k. (13) 

Fig. 2. “Scenario–task–capability” analysis process.
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The proposed DHF–MEE model categorizes the assessment results of 
EMSS resilience into l levels, such as “excellent,” “good,” “medium,” 
“qualified,” and “poor.” In the model, the extension domain is used to 
represent the ideal membership for each criterion in the set X at different 
resilience levels. Specifically, let < ai, bi > be the ideal membership in
terval of the criterion xi for the resilience level j, i = 1,2,...,p, j = 1,2,...,l. 
Then, the extension domain is defined as Rj. 

Rj =

⎡

⎢
⎢
⎢
⎢
⎣

Nt
x1 < a1,j, b1,j >

x2 < a2,j, b2j >

⋮ ⋮
xp < ap,j, bp,j >

⎤

⎥
⎥
⎥
⎥
⎦
, j = 1, 2, ..., l. (14) 

Following the principles in extension theory, the notation < ai, bi >

may denote an open interval, a closed interval, or a half–open, half
–closed interval, i = 1,2, ...,p. 

Step 3: Determine the extension distance and the degree of extension 
correlation.

The extension distance is a concept in extension theory designed to 
describe the difference between objects within a class. Considering the 
multivalued nature and uncertainty of the HFE mt(xi), the modified 
Hausdorff distance (MHD) base was chosen to define the extension 
distance function. The MHD can capture the overall differences between 
sets comprehensively, not just the distances of single elements, and is 
highly robust to outliers. According to the MHD definition of Dubuisson 
and Jain [75], the extension distance function is defined as follows: 

Dt(Γ,Θ) = max[d(Γ,Θ), d(Θ,Γ)], t = 1, 2,…, k, (15) 

where Γ is the HFE of the criterion xi at time t and is a finite set of 
discrete points, i = 1,2, ...,p, t = 1,2,…,k; Θ is the set that contains the 
upper and lower bounds of the ideal membership interval of xi at the 
resilience level j, i = 1,2, ...,p, j = 1,2, ..., l; d(A,B) and d(B,A) are for
ward MHD and backward MHD. The directed distance of the MHD is 
calculated as follows: 

d(Γ,Θ) =
1

NA

∑

a∈Γ
min
b∈Θ
‖ a − b ‖z, (16) 

‖ x ‖=

(
∑p

i=1
|xi|

z

)1/z

, (17) 

where ‖ ⋅ ‖z is the vector norm, z is the order of the norm. The norm 
method can accommodate different needs by varying the order of the 
norm. For instance, the Euclidean norm corresponds to z = 2. The dis
tance between two sets of points, d(Γ,Θ), is obtained by averaging the 
distances from each point a in Γ to its closest point b in Θ.

In extension theory, extension relevance helps to determine the de
gree of match between an element and a predefined set of ideals or 
criteria. Kj

t(xi) is the extension correlation degree of the assessment 
criterion xi for the resilience level j at time t, which is calculated as 

Kj
t(xi) = 1 − Dt(Γ,Θ), i = 1,2, ..., p, j = 1, 2, ..., l, t = 1, 2,…, k. (18) 

The extension correlation degree is negatively correlated with the 
extension distance: the shorter the distance, the higher the correlation 
degree, indicating that the actual situation is closer to the ideal criteria. 

Step 4: Determine the comprehensive degree of correlation and the resil
ience level.

The comprehensive correlation degree refers to the extension cor
relation degree between objects and different resilience levels. 

Kj
t(Nt) =

∑p

i=1
wiKj

t(xi), i=1,2, ..., p, j=1, 2, ..., l, t= 1,2,…, k, (19) 

where Kj
t(Nt) represents the comprehensive correlation degree of the 

object Nt to be assessed for the resilience level j at time t; Kj
t(xi) repre

sents the extension correlation degree of the assessment criterion xi for 
the resilience level j at time t; wi represents the weight of each criterion 
and satisfies 

∑p
i=1wi = 1, which was calculated by hesitant analytic hi

erarchy analysis (HAHP). This not only accepts the structured deci
sion–making framework of traditional AHP but also allows the inclusion 
of hesitancy in the assessment process, which can improve the accuracy 
of weight calculation. The specific calculation process of HAHP can be 
referred to in the study by Zhu et al. [76].

In the proposed DHF–MEE model, the principle of maximum corre

lation degree is used. If Kβ
t (xα) = max

(
Kj

t(xi)
)

, this means that the cri

terion xα of the EMSS reaches the resilience level β; if Kβ
t (Nt) =

max
(

Kj
t(Nt)

)
, which means that the matter–element Nt to be assessed 

reaches the resilience level β at time t, α, i = 1,2,...,p, β, j = 1,2,...,l, t =
1, 2,…, k. Following the above principle, the scientific and reasonable 
assessment results of the EMSS resilience level can then be finalized.

5. Case study

In this section, a case study was conducted to demonstrate how the 
developed data–intelligence–driven three–stage dynamic model for 
EMSS resilience assessment can be applied to real–world EMSS risk 
scenarios, to analyze the resilience assessment results, to validate the 
performance and robustness of the proposed model by method 
comparative analysis, and provide corresponding suggestions for resil
ience improvement.

5.1. Scenario construction

Major risk events are characterized by high uncertainty, significant 
social harm, and wide–ranging impacts, which impose stricter re
quirements for policy precision in risk responses. Considering the 
timeliness, completeness, and authority of data, this study selects data 
from press conferences in China for case analysis. Press conference data 
balances official narratives and public concerns, providing a more reli
able foundation for systematically analyzing EMSS resilience features. 
Furthermore, the diversity of press conference stakeholders allows this 
study to classify them into six categories: press spokespeople, govern
ment departments, experts, social organizations, news reporters, and 
community staff. It is important to note that while direct representatives 
from private enterprises are not typically present as formal speakers at 
official government press conferences, their operational roles and con
tributions are often reflected through the statements of government 
departments and industry experts who are frequently affiliated with or 
represent enterprise perspectives. For risk event extraction, this study 
employs Alibaba’s Qwen2.5 LLMs, which is known for its superior 
ability to understand Chinese language and process structured data [77].

In this case study, two typical risk scenarios were considered: natural 
disasters and public health emergencies. Regarding the natural disaster 
scenario, the 720 Henan rainstorm, which occurred in Henan Province of 
China in July 2021 was taken as an example. The storm caused great 
economic losses and human casualties, especially in Zhengzhou City. In 
this scenario, EMSS resilience, particularly in terms of early warnings, 
rescue material stockpiling, and rapid response, was put to a severe test. 
This scenario uses the verbatim transcripts of press conferences held by 
the People’s Government of Henan Province and its prefecture–level 
cities between July 21, 2021 and August 4, 2021 as the source of risk 
text data.

For the public health emergency scenario, the range of responses 
since the COVID–19 pandemic outbreak was reviewed. Taking Wuhan 
(the initial outbreak site) as an example, the decision–makers in 
municipal government adopted unprecedented measures to seal off the 
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city, which slowed down the spread of the pandemic effectively. This 
measure also posed an unprecedented challenge for the EMSS, especially 
in ensuring the provision of medical supplies and daily necessities. This 
scenario uses the verbatim transcripts of press conferences held by 
China’s State Council Joint Prevention and Control Mechanism between 
January 22, 2020 and November 5, 2022 as the source of risk text data.

By extracting risk events and constructing scenarios for these two 
typical risk scenarios, an EMSS risk scenario library that contains natural 
disasters and public health emergencies was constructed based on 
multi–source text data and multi–expert knowledge. Each scenario 
involved different risk factors, response tasks, and response measures, 
which imply different requirements for EMSS resilience. Based on a 
detailed analysis of these scenarios, a deeper understanding of EMSS 
resilience features in different risk scenarios can be gained. As shown in 
Fig. 3, in an ELG for risk scenario of 720 Henan rainstorm, the main 
transmission nodes of hazard agents to the vulnerable receptors include 
urban transportation system, electricity supply network, and commu
nication network. Specifically, each line segment and its accompanying 
arrow in Fig. 3 label the directionality of the causal relationship, where 
the arrow points from “cause” to “effect.” The risk scenario elements of 
EMSS are expressed in Table 2.

As shown in Fig. 4, in the risk scenario of the COVID–19 pandemic, the 
main transmission nodes of hazard agents to the vulnerable receptors 
include rice, frozen meat, and vegetables. The risk scenario elements of 
the EMSS are expressed in Table 3.

5.2. Criterion system construction

The criterion system for EMSS resilience assessment is constructed 
based on resilience feature extraction, and the details of the analysis 
process and finalized criteria are elaborated as follows.

5.2.1. Demonstration of criterion determination
As mentioned previously, complex EMSS risk scenarios were 

abstracted into a set of scenario elements with a hierarchical structure, 
which included a wealth of information. In response to the demands for 
improved storage for emergency supplies, rational resource allocation, 
and effective quality management, a comprehensive risk response pro
cess including pre–event prevention, mid–event response, and post
–event recovery was designed. Based on a systematic literature review 
and two rounds of expert interviews, three dimensions of resilience were 
finalized, namely, Withstanding capacity (B1), Recovery capacity (B2), and 

Adaptation capacity (B3). Following the analysis framework of “scenar
io–task–capability”, a criterion system for EMSS resilience assessment 
was constructed with a hierarchical structure consisting of a “goal layer, 
dimension layer, and criterion layer.”

Taking the criterion involved in the dimension of Withstanding ca
pacity (B1), i.e., Emergency supply sufficiency (X1), as an example, the 
process of criterion determination is described as follows. As shown in 
Fig. 5, an analysis was conducted on two specific risk scenarios: one was 
the 720 Henan rainstorm, involving the stock levels of critical supplies 
such as water, food, and medical supplies; the other was the COVID–19 
pandemic in Wuhan, focusing on the inventory management of medical 
and protective supplies.

In these scenarios, two major risk factors—supply chain disruptions 
and surges in demand—were identified, and detailed scenario element 
representations were constructed. In the task identification session, 
various tasks related to these scenarios were listed, including manage
ment of critical supplies inventory, inventory audit, and supply chain 
diversification. Among these tasks, the management of critical supplies 
inventory and inventory audit were specifically selected as key tasks 
based on the feedback of expert interviews, as they form the basis for 
ensuring that critical supplies meet demand during emergencies.

Once the key tasks were determined, the key capabilities required to 
execute these tasks were identified in the capability–building session. 
The inventory management capability allows for the real–time tracking 
and updating of the inventory status of critical materials, ensuring the 
accuracy and timeliness of inventory data. This includes continuous 
monitoring of essential supplies such as water, food, and medical 
products. Rapid replenishment capability is a system’s ability to act 

Fig. 3. Node relationship in the risk scenario of the 720 Henan rainstorm.

Table 2 
EMSS risk scenario elements in the 720 Henan rainstorm.

Element Expression

Issues <id: I01, name: Example scenario, type_dis: Rainstorm, time: 2021.7.20, 
address: Henan, application: Emergency material security>

Nodes <id: N01, name: Example scenario, type: (Hazard agents, Vulnerable 
receptors) > (attribute items [Rainstorm – Farmland and crops / Urban 
transportation system / Electricity supply network / Communication 
network / Social public order])

Constraints <id: C01, name: Example scenario, rule constraints: [Rainstorm, 
Inadequate urban drainage, 2021.7.20], respond constraints: [14.786 
million people, Resident safety / Farmland and crops / Urban commuters / 
Business activities / Urban transportation system / Social public order]>

Annotation (Drainage difficulty, Heavy precipitation, 2021.07.20)
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quickly to restock when inventory levels fall below predetermined safety 
thresholds, which requires close collaboration with suppliers and 
effective logistical support. Establishing these capabilities ensures the 
effective provision of critical emergency materials. Subsequently, a key 
feature for EMSS resilience was extracted: inventory persistence. This 
feature measures the ability of the EMSS inventory system to supply 
necessary materials continuously in the face of demand fluctuations or 
supply interruptions. It reflects the adaptability and efficiency of the 
EMSS in addressing both sudden and sustained demands. Finally, this 
resilience feature, i.e., inventory persistence, translates directly into a 
specific assessment criterion: Emergency supply sufficiency (X1). This 
criterion is measured by the effective implementation of real–time in
ventory monitoring and rapid replenishment responses, assessing 
whether critical emergency supplies can meet continuous and emergent 
needs.

5.2.2. Finalized criterion system
The “scenario–task–capability” analysis process ensures that the 

transition from scenario element representations to criteria is not only 
systematic but also highly specific, allowing for precise assessment and 
improvement suggestions for EMSS resilience. Following the afore
mentioned demonstration, a hierarchical criterion system for EMSS 
resilience assessment was finalized (Table 4), comprising three di
mensions and twelve criteria Xi, i = 1, 2, …, 12. Tables A.1–A.3, which 
are presented in Appendix A, show the criteria for an EMSS resilience 
assessment under different dimension layers derived from the 

transformation of scenario element representations. This structured 
approach facilitates a thorough EMSS resilience assessment across 
various scenarios, ensuring that all relevant features are considered and 
addressed effectively.

5.3. Assessment data collection

In this case study, EMSS resilience assessment on six sample cities in 
J Province of China denoted as Cities A, B, C, D, E, and F, was conducted 
based on data from 2019 to 2024. To ensure the reliability and multi
disciplinary validity of the assessment, seven domain experts (denoted 
as I, II, …, VII) were systematically selected according to the following 
criteria: (1) professional expertise in emergency management, disaster 
response, supply chain logistics, or risk assessment; (2) a minimum of 10 
years of practical or research experience in related fields; and (3) 
possession of advanced academic qualifications (e.g., master’s or 
doctoral degrees) and senior professional positions. As detailed in 
Table 5, the experts possess 10 to 22 years of professional experience, 
hold advanced degrees in relevant fields, and occupy key positions such 
as directors, senior engineers, and professors. These experts provided 
their assessments in the form of hesitant fuzzy numbers on a percentage 
scale, allowing for a set of possible values to reflect their uncertainty and 
hesitation regarding various resilience criteria of EMSS.

By systematically integrating and normalizing the knowledge data 
from the seven experts, the hesitant fuzzy assessment information for the 
EMSS resilience assessment of each city was determined across different 
periods. Taking the multi–expert knowledge collected from expert I in 
2019 and 2024 as an example, the hesitant fuzzy assessment information 
for City A is shown in Table 6.

In the constructed criterion system for EMSS resilience assessment, 
each criterion plays a vital role and holds significant importance. To 
accommodate the experts’ potential hesitation or uncertainty in their 
assessments, their relative importance judgments for these criteria were 
collected using a hesitant fuzzy judgment matrix. The weights for each 
criterion were then calculated using the HAHP method. For instance, the 
hesitant fuzzy judgment for criterion weights from expert I is displayed 
in Table 7. Additionally, referring to the design concept of the urban 
disaster resilience scorecard developed by the United Nations [78], 
EMSS resilience is divided into five levels (ranking from high to low): 
“High”, “Good”, “Normal”, “Limited”, and “Fragile”, and the scoring for 

Fig. 4. Node relationship in the risk scenario of the COVID–19 pandemic.

Table 3 
EMSS risk scenario elements in the COVID–19 pandemic.

Element Expression

Issues <id: I02, name: Example scenario, type_dis: COVID–19 pandemic, time: 
2020.2.5, address: Wuhan, application: Emergency supplies security>

Node <id: N02, name: Example scenario, type: (Hazard agents, Vulnerable 
receptors) > (attribute items [Urban lockdown – Rice / Frozen meat / 
Vegetables / Food security / International supply chain / Express Delivery])

Constraints <id: C02, name: Example scenario, rule constraints: [COVID–19 
pandemic, Urban lockdown – Rice, 2020.1.23 to 2020.4.8], respond 
constraints: [13.73 million people, Rice / Frozen meat / Vegetables / 
Aquatic products, Express delivery / High–speed railway]>

Annotation (Physical element, Information element, Management element, 2020.2.5)
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each resilience level is shown in Table 8.

5.4. Resilience assessment results

The results of the EMSS resilience assessment for the six sample cities 
in J Province from 2019 to 2024 are shown in Table 9. The weights of the 
assessment criteria were 0.0827, 0.077, 0.076, 0.098, 0.082, 0.089, 
0.079, 0.082, 0.085, 0.079, 0.083, and 0.083. As shown in Fig. 6, the 

overall profile of EMSS resilience is upward, i.e., the EMSS resilience of 
the six sample cities has improved or at least remained the same, but 
there are some differences. This suggests that the EMSS construction 
efforts in J Province are effective in improving the cities’ capability for 
emergency supplies security.

From a horizontal comparison perspective, the EMSS construction of 
Cities C and E was almost complete in 2019, which meant it could 
respond better to risk events, and resilience level was at “Normal”. 
However, the EMSS construction of City F was still in its initial stage. In 
2021, the resilience level of the six sample cities rose to “Good”. This 
indicates that in that year, the EMSS construction of the six cities had 
improved significantly. This might be due to some major risk events that 
occurred in 2021, such as the COVID–19 pandemic, which forced these 
cities to strengthen their work in the reserve, allocation, dispatch, and 
transportation of emergency supplies, thus improving their EMSS 
resilience.

From a vertically comparison perspective, although the EMSS resil
ience of City F was the weakest in 2019, with resilience at “Fragile”, the 
resilience level quickly improved to “Good” in 2021. After 2021, the 
resilience level remained unchanged, but those at “High” increased 
steadily every year, which indicates that the EMSS resilience of City F 
was still improving continuously, that is, the consistency between the 
resilience level and the actual resilience was high. Similarly, the resil
ience level of City B jumped from “Limited” in 2019 to “Good” in 2020 

Fig. 5. “Scenario–task–capability” analysis process of the criterion emergency supply sufficiency (X1).

Table 4 
Hierarchical criterion system for EMSS resilience assessment.

Dimensions Criteria

Withstanding capacity (B1) Emergency supply sufficiency (X1)
Supply category allocation (X2)
Warehouse infrastructure quality (X3)
Warehouse efficiency (X4)

Recovering capacity (B2) Emergency response timeliness (X5)
Supply–demand forecasting (X6)
Safety information sharing (X7)
Staff reliability (X8)

Adaptive capacity (B3) Inventory cost reduction (X9)
Vendor risk sharing (X10)
Risk review capability (X11)
Interdepartmental collaboration (X12)
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and then reached “High” in 2024. Cities A, C, D, and E also showed 
steady resilience improvements over the period. Notably, all four 
reached “High” in 2024, with comprehensive correlation of 0.8468 (City 
A), 0.8419 (City C), 0.8479 (City D), and 0.9043 (City E), reflecting 
robust resilience across the province.

5.5. Comparative analysis

To validate the performance and robustness of the proposed 

DHF–MEE model, a comparative analysis was conducted against three 
established multi–criteria decision–making methodologies: the classic 
MEE model, the Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) method, and the VlseKriterijumska Optimizacija I 
Kompromisno Resenje (VIKOR) method. This comparison aims to 
benchmark the proposed model and demonstrate its added value in 
handling the specific challenges of EMSS resilience assessment.

To ensure a fair and objective comparison, all four methods were 
applied to the same dataset: the expert judgment data for City A span
ning the years from 2019 to 2024. A challenge arose because the classic 
MEE model, TOPSIS method, and VIKOR method require crisp numeri
cal inputs, whereas the original data in this study are represented as 
HFSs to capture expert uncertainty and hesitation. To resolve this, we 
adopted a standard and widely accepted practice: the hesitant fuzzy 
numbers for each criterion were converted into deterministic values by 
calculating their arithmetic mean values. This allowed for a direct 
comparison while preserving the core information from the original 
assessments.

Taking City A as an example, Table 10 shows the exemplary results of 

Table 5 
Profiles of the selected experts in the EMSS resilience assessment.

Expert 
ID

Affiliation Position/Title Years of 
experience

Educational background Professional Field

I Provincial Emergency Management 
Department

Senior Officer 15 Master of Public Administration Emergency Response & 
Planning

II Provincial Emergency Management 
Department

Safety Assessment Engineer 12 Master of Safety Engineering Risk Assessment & Mitigation

III Provincial Logistics Association Technical Consultant 20 PhD in Logistics Management Emergency Logistics
IV Provincial Disease Control Center Emergency Response 

Specialist
18 Master of Epidemiology Public Health Emergency

V Provincial Transportation Department Transport Planning 
Engineer

16 PhD in Transportation 
Engineering

Emergency Transport

VI J University, School of Management Professor 22 PhD in Management Science Emergency Management
VII J University, School of Civil Engineering Assistant Professor 10 PhD in Civil Engineering Infrastructure Resilience

Table 6 
Hesitant fuzzy assessment information for City A in 2019 and 2024 for example.

Years 
Criteria

2019 2024

X1 0.43, 0.44, 0.45 0.9, 0.92
X2 0.31, 0.3 0.86, 0.88
X3 0.5, 0.48 0.88
X4 0.4, 0.42 0.8, 0.75
X5 0.54, 0.53 0.92, 0.9
X6 0.3, 0.32, 0.34 0.8
X7 0.45, 0.46 0.9
X8 0.68, 0.7 0.97, 0.95
X9 0.32, 0.35 0.8, 0.78, 0.75
X10 0.15 0.78, 0.8, 0.82
X11 0.43, 0.45 0.95
X12 0.34, 0.32 0.78, 0.77

Table 7 
Hesitant fuzzy judgment matrix for criterion weights from expert I.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 1 2,3 4 1/3, 1/4 3,4,5 1/6,1/7 1/5,1/6 6,7,8 1/4 1/8 1/2,1/3 1/3,1/ 
4

X2 1/2,1/3 1 1/7,1/ 
8

1/4,1/5 5,6,7 7,8,9 1/5,1/3,1/ 
4

6,7 5 8,9 1/3,1/4,1/ 
5

1/7,1/ 
8

X3 1/4 7,8 1 7,8 1/8,1/ 
9

1/3,1/4,1/ 
5

2 1/7, 1/8 1/8 3 1/2, 1/3,1/ 
4

1/7

X4 3,4 4,5 1/7,1/ 
8

1 2,3 5,6 1,1/2,1/3 3,4,5 5,6,7 3,4 1/3,1/4 1/9

X5 1/3,1/4,1/ 
5

1/5,1/6,1/ 
7

8,9 1/2,1/3 1 3,4 1/4,1/5,1/ 
6

8 1/7,1/8,1/ 
9

4,5 1,1/2 1/4,1/ 
5

X6 6,7 1/7, 1/8,1/ 
9

3,4,5 1/5,1/6 1/3,1/ 
5

1 6,7,8 1/3,1/4,1/ 
5

1/2,1/3,1/ 
4

5,6 1,1/2,1/3 1/3,1/ 
4

X7 5,6 2,3,4 1/2 1,2,3 4,5,6 1/6,1/7,1/ 
8

1 2 3,4 1/5,1/7,1/ 
8

1/6 2,3

X8 1/6,1/7,1/ 
8

1/6,1/7 7,8 1/3,1/4,1/ 
5

1/8 3,4,5 1/2 1 1/4 1,2,3 1/4,1/5,1/ 
6

1/2,1/ 
3

X9 4 1/5 8 1/5,1/6,1/ 
7

7,8,9 2,3,4 1/3,1/4 4 1 9 1/6,1/7,1/ 
8

5,6,7

X10 8 1/8,1/9 1/3 1/3,1/4 1/4,1/ 
5

1/5,1/6 5,6,7 1,1/2,1/3 1/9 1 1/5 1/7

X11 2,3 3,4,5 2,3,4 3,4 1,2 1,2,3 6 4,5,6 6,7,8 5 1 1/4,1/ 
5

X12 3,4 7,8 7 9 4,5 3,4 1/2,1/3 2,3 1/5,1/6,1/ 
7

7 4,5 1

Table 8 
EMSS resilience level and scoring standard.

Resilience level High Good Normal Limited Fragile

Score 0.8~1 0.6~0.8 0.4~0.6 0.2~0.4 0~0.2
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the four methods for assessing its resilience over the six years. All four 
methods produce outputs that exhibit a consistent trend over time, 
strongly validating the conclusion that the EMSS resilience of City A has 
been steadily improving. For TOPSIS method, the values represent the 
relative closeness coefficient (C*), which also ranges from 0 to 1, with a 
higher value indicating better resilience. For VIKOR method, the values 
represent the compromise ranking index (Q), where a lower value 

indicates better resilience. Consequently, the monotonically increasing 
trend of K and C* values, coupled with the monotonically decreasing 
trend of Q values, collectively confirm the improvement of EMSS 
resilience.

The primary advantage of the proposed DHF–MEE model lies in its 
ability to handle uncertainty and provide more abundant diagnostic 
information. By operating in a hesitant fuzzy environment, the 

Table 9 
Comprehensive correlation and the resilience assessment results.

City Year Fragile Limited Normal Good High Resilience level

City A 2019 0.6275 0.7976 0.8269 0.6658 0.4675 Normal
2020 0.5308 0.7309 0.8446 0.7485 0.5633 Normal
2021 0.4168 0.6168 0.8142 0.8386 0.6757 Good
2022 0.3243 0.5243 0.7243 0.8769 0.7956 Good
2023 0.2096 0.4096 0.6096 0.8088 0.8530 High
2024 0.1904 0.3904 0.5905 0.7905 0.8602 High

City B 2019 0.6739 0.8317 0.7780 0.5879 0.3878 Limited
2020 0.4244 0.6245 0.8245 0.8535 0.6535 Good
2021 0.3756 0.5757 0.7757 0.8825 0.7045 Good
2022 0.3046 0.5046 0.7046 0.8930 0.8060 Good
2023 0.1845 0.3845 0.5845 0.7845 0.8977 High
2024 0.1645 0.3645 0.5645 0.7646 0.9026 High

City C 2019 0.5563 0.7564 0.8794 0.7109 0.5108 Normal
2020 0.4050 0.6050 0.8011 0.8501 0.6517 Good
2021 0.3468 0.5468 0.7468 0.8968 0.7156 Good
2022 0.3074 0.5074 0.7075 0.8976 0.7627 Good
2023 0.2578 0.4578 0.6578 0.8578 0.8094 Good
2024 0.2423 0.4423 0.6423 0.8423 0.8468 High

City D 2019 0.7414 0.8934 0.7517 0.5517 0.3517 Limited
2020 0.4909 0.6909 0.8717 0.7855 0.5855 Normal
2021 0.3750 0.5750 0.7750 0.8864 0.6965 Good
2022 0.3242 0.5242 0.7242 0.9000 0.7525 Good
2023 0.2603 0.4603 0.6603 0.8604 0.8154 Good
2024 0.2418 0.4418 0.6418 0.8419 0.8479 High

City E 2019 0.5485 0.7486 0.8993 0.7689 0.5688 Normal
2020 0.3782 0.57825 0.7782 0.8742 0.6852 Good
2021 0.3045 0.5046 0.7046 0.8937 0.7727 Good
2022 0.2119 0.4119 0.6119 0.8119 0.8781 High
2023 0.1372 0.3372 0.5373 0.7373 0.9017 High
2024 0.1188 0.3189 0.5189 0.7189 0.9043 High

City Year Fragile Limited Normal Good High Resilience level
City F 2019 0.8801 0.7904 0.5903 0.3903 0.1903 Fragile

2020 0.5522 0.7522 0.8986 0.7600 0.5600 Normal
2021 0.4021 0.6021 0.8021 0.8712 0.6712 Good
2022 0.3359 0.5359 0.7360 0.9002 0.7542 Good
2023 0.2631 0.4631 0.6631 0.8632 0.8104 Good
2024 0.2510 0.4510 0.6510 0.8510 0.8496 Good

Note: Bolded values are the maximum comprehensive correlation for the current years, and the corresponding resilience level is the assessment result.

Fig. 6. Resilience levels of J Province from 2019 to 2024.
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DHF–MEE model directly incorporates the inherent uncertainty and 
hesitation in expert judgments, which are simply averaged out in the 
comparison with the classic MEE model, TOPSIS method, and VIKOR 
method. While all methods can identify the overall trend, the DHF–MEE 
model offers a unique diagnostic feature. It can provide the correlation 
degrees of each individual criterion with each resilience level, allowing 
decision–makers to pinpoint specific strengths and weaknesses. This 
provides far more actionable insights for targeted improvements than 
the single aggregated scores from the other methods.

5.6. Resilience improvement strategies

This subsection provides some general strategies for EMSS resilience 
improvement, using City A as an example. The extension correlation 
degrees of City A’s resilience assessment criteria with each resilience 
level in 2024 are shown in Table 11.

The resilience levels of City A’s resilience assessment criteria from 
2019 to 2024 are shown in Table 12. We note (see Fig. 7) an overall 
upward trend in City A’s resilience between 2019 and 2024, with 
notable improvements in Withstanding capacity (B1) and Recovering ca
pacity (B2) in particular, but still much room for improvement in 
Adaptive capacity (B3).

Specifically, Emergency supply sufficiency (X1) can meet emergency 
needs, and Supply category allocation (X2) has been configured scientifi
cally and effectively. However, the operational efficiency of emergency 
material storage warehouses still needs to be improved, with only one 
level of improvement in 2024 compared to 2019. This may be because 
storage improvement includes input from various aspects such as 
equipment, systems, personnel, and maintenance, and the input cost 
becomes a constraint. Given this constraint, the following specific 
withstanding capacity improvement strategies were proposed. 

• Introducing intelligent warehousing and logistics management sys
tems to improve the efficiency of material entry and exit, inventory 
and scheduling through intelligence technology [79].
• Implementing lean warehousing management using lean 

manufacturing tools such as Value Stream Mapping and 5S man
agement. Eliminating the seven wastes of overproduction, waiting 
time, transportation, over–processing, inventory, motion, and de
fects will improve the operational efficiency of the warehouse [80].

In terms of Recovery capacity (B2), City A has shown significant 
progress in its ability to recover from emergencies, with improved 
Emergency response timeliness (X5) and improved Supply–demand fore
casting (X6). However, the need is identified to further improve precision 
in demand forecasting and streamline the response process for an even 
faster recovery during emergencies. Considering these aspects, the 
following specific strategies for improving recovery capacity were 
proposed. 

• Developing a more efficient demand forecasting model that in
corporates real–time data analytics and machine learning techniques 
to predict emergency supply needs with higher accuracy. By 
leveraging historical data and integrating predictive analytics, City A 
can anticipate and prepare better for the surge in demand for 
emergency supplies during various crises [81].
• Establishing a centralized emergency response command center 

equipped with modern communication and coordination tools. This 
center would serve as the hub for information flow and deci
sion–making during emergencies, enabling swift and coordinated 
responses across different departments and agencies [82].

In terms of Adaptive capacity (B3), although City A has improved its 
EMSS adaptability to changing circumstances, further measures can be 
taken to ensure long–term resilience. This includes improving the sys
tem’s ability to adjust to new challenges and ensuring sustainability in 
the provision of emergency supplies. To this end, the following specific 
adaptive capacity improvement strategies were proposed. 

• Implementing a flexible supply chain management approach that 
allows for rapid adjustment to supply chain disruptions. This can be 
achieved by diversifying supply sources, developing risk–sharing 
agreements with suppliers, and incorporating contingency planning 
into supply chain operations [83].
• Investing in technology–driven solutions for emergency supply 

management, such as blockchain for transparent and secure tracking 
of supplies. These technologies can significantly improve the 
adaptability of the EMSS by providing accurate and timely infor
mation for decision–making [84].

These strategies aim to bolster City A’s EMSS resilience in recovering 
swiftly from emergencies and adapting to new challenges, ensuring that 
its EMSS remains robust and responsive in the face of future crises.

6. Conclusions

To address the challenges of EMSS resilience assessment with the 
involvement of multiple stakeholders, multiple stages and dynamic 
evolution, a novel data–intelligence–driven three–stage dynamic model 
is developed in this study. In Stage 1, a LLMs–enhanced NER model is 

Table 10 
Comparative results of EMSS resilience assessment for City A.

Year DHF–MEE model MEE model TOPSIS method VIKOR method

2019 Normal Normal 0.45 0.82
2020 Normal Normal 0.58 0.71
2021 Good Good 0.72 0.54
2022 Good Good 0.85 0.38
2023 High High 0.91 0.19
2024 High High 0.94 0.12

Table 11 
Extension correlation degrees for City A’s resilience assessment criteria in 2024.

Criteria Fragile Limited Normal Good High Resilience level

X1 0.11 0.31 0.51 0.71 0.90 High
X2 0.14 0.34 0.54 0.74 0.90 High
X3 0.18 0.38 0.58 0.78 0.90 High
X4 0.25 0.45 0.65 0.85 0.82 Good
X5 0.12 0.32 0.52 0.72 0.90 High
X6 0.3 0.5 0.7 0.90 0.8 Good
X7 0.18 0.38 0.58 0.78 0.90 High
X8 0.05 0.25 0.45 0.65 0.85 High
X9 0.28 0.48 0.68 0.88 0.85 Good
X10 0.25 0.45 0.65 0.85 0.82 Good
X11 0.14 0.34 0.54 0.74 0.90 High
X12 0.26 0.46 0.66 0.86 0.80 Good

Table 12 
Resilience level comparison for City A’s resilience assessment criteria from 2019 
to 2024.

Years 
Criteria

2019 2020 2021 2022 2023 2024

X1 Normal Normal Normal Good High High
X2 Limited Normal Good Good High High
X3 Normal Normal Normal Good High High
X4 Normal Normal Good Good Good Good
X5 Normal Good Good High High High
X6 Limited Limited Normal Good Good High
X7 Normal Normal Good Good High High
X8 Good Good High High High High
X9 Limited Normal Normal Good Good High
X10 Fragile Limited Normal Good Good Good
X11 Normal Normal Good High High High
X12 Limited Limited Normal Good Good High
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proposed to process multi–source text data and multi–expert knowledge 
for risk event extraction, constructing a foundational dataset for dy
namic scenario modeling. In Stage 2, an ontology–based scenario con
struction model is proposed, leveraging the 〈I–N–C–A〉 representation 
framework to transform risk events into structured elements and 
construct a comprehensive risk scenario library. This allows for sys
tematic recognition of resilience features by linking scenario elements, 
governance tasks, and system capabilities. In Stage 3, based on multi
–expert knowledge and extension of the classic MEE model, a DHF–MEE 
model is proposed to conduct a feature–matching quantitative assess
ment for the profile of EMSS resilience. Through the model, we have 
navigated the inherent uncertainties in multi–expert perception for 
EMSS resilience features effectively, thereby providing a nuanced 
depiction of EMSS resilience across various risk scenarios. A scientific 
and efficient assessment of EMSS resilience is realized from the per
spectives of multitime–point features, multidimensional criteria, and 
multi–source heterogeneous data, effectively catering for the afore
mentioned challenges.

Taking the EMSS resilience assessment of six sample cities in J 
Province as a case study, the effectiveness and applicability of the 
developed data–intelligence–driven three–stage dynamic model are 
verified. Through horizontal comparison, vertical self–examination, key 
criteria identification, etc., the assessment results are analyzed in depth, 
providing a new idea for EMSS resilience improvement. Our findings 
indicate that EMSS resilience has improved significantly over time, 

demonstrating the system’s enhanced ability to adapt to and recover 
from disruptive events. To further this progress, we recommend focusing 
on improving these areas through strategic planning and policy adjust
ments. Moreover, our study underscores the importance of a multifac
eted perspective on resilience assessment, which not only judges the 
current profile but also guides improvements in the system capacity to 
withstand and respond to emergencies. The DHF–MEE model’s flexi
bility and depth in handling multidimensional criteria and hesitations 
have proven essential in refining the resilience assessment process, thus 
offering a valuable framework for other sectors to seek strategies for 
improving their resilience.

In conclusion, this study provides a holistic solution and efficient 
methodology for EMSS resilience assessment, not only offering signifi
cant insights into a multifaceted recognition of EMSS resilience to risk 
scenarios, but also ensuring that the system remains robust in the face of 
evolving global risk challenges. In the future, study on expanding the 
developed model to incorporate real–time data analytics is worth 
exploring to further improve the accuracy and operational effectiveness 
of EMSS resilience assessment.
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Appendix A. Scenario element representations supporting the construction of assessment criteria.

Table A.1 
Exemplary scenario element representations used to identify criteria under the withstanding capacity dimension B1.

Case Scenario Element Representation Identified Criterion

COVID–19 
pandemic

Issues {<id: I01, name: COVID–19 Wuhan lockdown, type_dis: Public health crisis, time: 2020.1.23, address: Wuhan, application: 
Emergency supplies management>} 
Nodes {<id: N01, name: Emergency supplies depot, type: Vulnerable Receptors> (attribute items [Ration stockpile, Personal 
protective equipment inventory, Medication reserves])} 
Constraints {<id: C01, name: Supply chain continuity, rule constraints: [COVID–19, Urban lockdown], respond constraints: 
[Supply chain diversification, Backup suppliers]>} 
Annotations {(Total stockpile quantity, Replenishment rate, Consumption rate, 2020.1.23)}

Emergency supply sufficiency 
(X1)

720 Henan 
rainstorm

Issues {<id: I01, name: Shortage of critical supplies, type_dis: Natural disaster, time: 2021.7.20, address: Zhengzhou, application: 
Critical supply availability>} 
Nodes {<id: N01, name: Stock levels of critical supplies, type: Supply inventory> (attribute items [Water, Food, Medical supplies])} 
Constraints {<id: C01, name: Supply chain resilience, rule constraints: [Supply route disruptions, High demand], respond 
constraints: [Alternative sourcing, Stockpile management]>} 
Annotations {(Stock adequacy, Replenishment frequency, Emergency distribution efficiency, 2021.7.20)}

COVID–19 
pandemic

Issues {<id: I02, name: Omicron variant spread, type_dis: Public health crisis, time: 2021.11.15, address: Wuhan, application: 
Strategic supplies allocation>} 
Nodes {<id: N02, name: Strategic supplies allocation, type: Vulnerable Receptors> (attribute items [Critical medical equipment, 
Essential commodities, Personal care items])} 
Constraints {<id: C02, name: Supply category management, rule constraints: [Public health emergency, Government intervention], 
respond constraints: [Supply prioritization, Redistribution policies]>} 
Annotations {(Allocation efficiency, Response to demand changes, Coverage completeness, 2021.11.15)}

Supply category allocation 
(X2)

720 Henan 
rainstorm

Issues {<id: I02, name: Resource allocation failure, type_dis: Natural disaster, time: 2021.7.20, address: Zhengzhou, application: 
Resource allocation>} 
Nodes {<id: N02, name: Supply distribution centers, type: Vulnerable Receptors> (attribute items [Medicines, Sanitation supplies, 
Shelter materials])} 
Constraints {<id: C02, name: Allocation strategy, rule constraints: [Demand surge, Supply chain interruptions], respond 
constraints: [Priority allocation, Equitable distribution]>} 
Annotations {(Resource utilization efficiency, Response speed, Coverage completeness, 2021.7.20)}

COVID–19 
pandemic

Issues {<id: I03, name: Infrastructure failure, type_dis: Operational interruption, time: 2020.2.5, address: Wuhan, application: 
Infrastructure quality>} 
Node: {<id: N03, name: Central warehouse, type: Vulnerable receptors> (attribute items [Structural integrity, Climate control, Fire 
safety, IT systems])} 
Constraints {<id: C03, name: Infrastructure maintenance, rule constraints: [Regular inspections, Disaster resilience standards], 
respond constraints: [Upgrade schedule, Maintenance crew readiness]>} 
Annotations {(Facility condition, Accessibility, Safety compliance, 2020.2.5)}

Warehouse infrastructure 
quality (X3)

720 Henan 
rainstorm

Issues {<id: I03, name: Warehouse damage, type_dis: Infrastructure impact, time: 2021.7.21, address: Zhengzhou, application: 
Disaster impact>} 
Nodes {<id: N03, name: Affected storage facilities, type: Infrastructure> (attribute items [Structural damage, Water intrusion, 
Electrical failure])} 
Constraints {<id: C03, name: Preventive and responsive measures, rule constraints: [Construction standards, Flood zone regulations, 
respond constraints: [Emergency repairs, Waterproofing enhancements]>} 
Annotations {(Damage assessment, Recovery progress, Compliance with safety standards, 2021.7.21)}

COVID–19 
pandemic

Issues {<id: I04, name: Logistics deployment, type_dis: Operational interruption, time: 2020.4.15, address: Wuhan, application: 
Material handling>} 
Nodes {<id: N04, name: Logistics management center, type: Vulnerable Receptors> (attribute items [Logistics coordination, Staff 
allocation, Resource management])} 
Constraint: <id: C04, name: Operational protocols, rule constraints: [Pandemic measures, Personnel safety], respond constraints: 
[Shift scheduling, Task automation]>} 
Annotations {(Order processing time, Delivery turnaround, Inventory accuracy, 2020.4.14)}

Warehouse efficiency (X4)

720 Henan 
rainstorm

Issues {<id: I04, name: Warehouse operational disruptions, type_dis: Operational interruption, time: 2021.7.20, address: 
Zhengzhou, application: Operational continuity>} 
Nodes {<id: N04, name: Warehouse operational capacity, type: Operational management> (attribute items [Staff accessibility, 
System functionality, Process continuity])} 
Constraints {<id: C04, name: Operational continuity plans, rule constraints: [Staff unavailability, Equipment malfunction], 
respond constraints: [Backup staff plans, Equipment maintenance]>} 
Annotations {(Process efficiency, System downtime, Operational recovery, 2021.7.20)}
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Table A.2 
Exemplary scenario element representations used to identify criteria under the recovering capacity dimension B2.

Case Scenario Element Representation Identified Criterion

COVID–19 
pandemic

Issues <id: I05, name: COVID–19 Delta variant, type_dis: Public health crisis, time: 2021.7.15, address: Nanjing, application: 
Emergency response>} 
Nodes 〈id: N05, name: Rapid response team, type: Disaster–response entities〉 (attribute items [Response time, Decision speed, 
coordination])} 
Constraints <id: C05, name: Response protocol, rule constraints: [Delta variant, First cases detection], respond constraints: 
[Activation latency, Deployment speed]>} 
Annotations {(Response time, Response adequacy, Operational readiness, 2021.7.15)}

Emergency response 
timeliness (X5)

720 Henan 
rainstorm

Issues {<id: I05, name: Delayed rescue operations, type_dis: Natural disaster, time: 2021.7.20, address: Zhengzhou, application: 
Rescue response>} 
Nodes {<id: N05, name: Response team activation, type: Response management> (attribute items [Team mobilization, Equipment 
readiness])} 
Constraints {<id: C05, name: Response acceleration measures, rule constraints: [Communication delays, Access route blockages], 
respond constraints: [Enhanced communication systems, Clearing access routes]>} 
Annotations {(Time to mobilization, Response effectiveness, Impact of delays, 2021.7.20)}

COVID–19 
pandemic

Issues {<id: I06, name: Material shortage, type_dis: Supply chain disruption, time: 2020.2.23, address: Wuhan, application: Supply 
demand>} 
Nodes {<id: N06, name: Supply planning, type: Supply management> (attribute items [Resource allocation, Supply adjustment])} 
Constraints {<id: C06, name: Resource adjustment strategies, rule constraints: [Fluctuating supply and demand, Logistical 
challenges], respond constraints: [Strategic stockpiling, Expedited distribution]>} 
Annotations {(Planning accuracy, Supply response speed, Effectiveness of adjustments, 2020.2.23)}

Supply–demand forecasting 
(X6)

720 Henan 
rainstorm

Issues {<id: I06, name: Unanticipated demand surges, type_dis: Supply chain disruption, time: 2021.7.22, address: Zhengzhou, 
application: Supplies demand>} 
Nodes {<id: N06, name: Supplies operations, type: Operational management> (attribute items [Resource allocation, Stock level 
adjustments])} 
Constraints {<id: C06, name: Resource management, rule constraints: [Sudden increase in demand, Logistical disruptions], respond 
constraints: [Resource reallocation, Emergency procurement]>} 
Annotations {(Allocation efficiency, Stock adjustment speed, Adequacy of response measures, 2021.7.22)}

COVID–19 
pandemic

Issues {<id: I07, name: Health tracking, type_dis: Data privacy, time: 2020.5.15, address: Wuhan, application: Health information 
sharing>} 
Nodes {<id: N07, name: Health data management, type: Data security> (attribute items [Data collection, Data sharing, Privacy 
protections])} 
Constraints {<id: C07, name: Privacy–secure information systems, rule constraints: [Legal privacy requirements, Public trust], 
respond constraints: [Enhanced data encryption, Transparent data usage policies]>} 
Annotations {(Data security level, Public trust in data handling, Compliance with privacy laws, 2020.5.15)}

Safety information sharing 
(X7)

720 Henan 
rainstorm

Issues {<id: I07, name: Communication breakdown in disaster, type_dis: Natural disaster, time: 2021.7.23, address: Zhengzhou, 
application: Emergency communication>} 
Nodes {<id: N07, name: Critical communication channels, type: Communication systems> (attribute items [Rescue coordination, 
Public alerts, Information verification])} 
Constraints {<id: C07, name: Communication reliability and security, rule constraints: [Infrastructure vulnerability, Power failures], 
respond constraints: [Redundant communication systems, Emergency power solutions]>} 
Annotations {(Communication reliability, Information dissemination speed, Data security, 2021.7.23)}

COVID–19 
pandemic

Issues {<id: I08, name: Rapid mobilization, type_dis: Workforce management, time: 2021.7.15, address: Nanjing, application: 
Emergency response>} 
Nodes {<id: N08, name: Emergency response team, type: Human resources> (attribute items [Rapid deployment, Staff training, 
Response readiness])} 
Constraints {<id: C08, name: Staffing and training, rule constraints: [Skilled personnel, Quick turnaround], respond constraints: 
[Training programs, Staff reallocation]>} 
Annotations {(Deployment speed, Training effectiveness, Overall response effectiveness, 2021.7.15)}

Staff reliability (X8)

720 Henan 
rainstorm

Issues {<id: I08, name: Emergency workforce shortage, type_dis: Workforce management, time: 2021.7.21, address: Zhengzhou, 
application: Emergency response staffing>} 
Nodes {<id: N08, name: Emergency workforce, type: Human resources> (attribute items [Staff availability, Staff condition])} 
Constraints {<id: C08, name: Workforce management strategies, rule constraints: [High demand, Staff fatigue], respond constraints: 
[Additional Hiring, Shift rotations]>} 
Annotations {(Staff readiness, Efficiency under pressure, Adaptability to extended hours, 2021.7.21)}

Table A.3 
Exemplary scenario element representations used to identify criteria under the adaptive capacity dimension B3.

Case Scenario Element Representation Identified Criterion

COVID–19 
pandemic

Issues {<id: I09, name: Supply chain disruptions, type_dis: Economic impact, time: 2020.1.23, address: Wuhan, application: 
Supply chain management>} 
Nodes {<id: N09, name: Cost management strategies, type: Supply chain optimization> (attribute items [Supplier negotiation, 
Inventory management])} 
Constraints {<id: C09, name: Economic and operational constraints, rule constraints: [Increased supply costs, Reduced workforce 
availability], respond constraints: [Strategic sourcing, Automation]>} 
Annotations {(Cost reduction effectiveness, Supply chain resilience, Economic efficiency, 2020.1.23)}

Inventory cost reduction (X9)

720 Henan 
rainstorm

Issues {<id: I09, name: Resource scarcity cost impact, type_dis: Economic impact, time: 2021.8.2, address: Zhengzhou, application: 
Supply chain>} 
Nodes {<id: N09, name: Cost management, type: Economic management> (attribute items [Price tracking, Cost analysis, 
Negotiation])} 
Constraints {<id: C09, name: Cost control, rule constraints: [Market fluctuations, Supply disruptions], respond constraints: 

(continued on next page)
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Table A.3 (continued )

Case Scenario Element Representation Identified Criterion

[Stockpiling, Long–term contracts]>} 
Annotations {(Cost efficiency, Budget adherence, Supplier relationship, 2021.8.02)}

COVID–19 
pandemic

Issues <id: I10, name: Material supply interruption, type_dis: Supply chain disruption, time: 2020.3.1, address: Wuhan, 
application: Vendor collaboration>} 
Nodes 〈id: N10, name: Supplier network, type: Disaster–prevention entities〉 (attribute items [Supplier diversification, Contract 
terms, Contingency planning])} 
Constraints <id: C10, name: Risk sharing policy, rule constraints: [“Global pandemic effects”, “Supply chain disruptions”], respond 
constraints: [Multi–sourcing, Mutual support agreements]>} 
Annotations {(Risk mitigation, Supplier reliability, Contract compliance, 2020.3.1)}

Vendor risk sharing (X10)

720 Henan 
rainstorm

Issues {<id: I10, name: Supplier risk, type_dis: Supply chain disruption, time: 2021.7.29, address: Zhengzhou, application: Vendor 
management>} 
Nodes {<id: N10, name: Vendor management, type: Supply management> (attribute items [Risk assessment, Contract 
adjustments])} 
Constraints {<id: C10, name: Risk mitigation, rule constraints: [Single–source dependency, Contract rigidity], respond constraints: 
[Diversification, Flexible contracts]>} 
Annotations {(Risk management effectiveness, Contract flexibility, Diversification success, 2021.7.29)}

COVID–19 
pandemic

Issues <id: I11, name: Delta variant, type_dis: Post–event analysis, time: 2021.7.15, address: Nanjing, application: Risk assessment 
and mitigation>} 
Nodes {<id: N11, name: Risk assessment team, type: Disaster–prevention entities} (attribute items [Epidemiological expertise, Risk 
analysis tools, Decision support systems])} 
Constraints {<id: C11, name: Review procedures, rule constraints: [Delta variant transmission dynamics, Public health guidelines], 
respond constraints: [Rapid assessment turnaround, Adaptation to new evidence]} 
Annotations {(Risk awareness, Response efficacy, Policy influence, 2021.7.15)}

Risk review capacity (X11)

720 Henan 
rainstorm

Issues {<id: I11, name: Disaster investigation, type_dis: Post–event analysis, time: 2022.1.27, address: Zhengzhou, application: 
Risk evaluation>} 
Nodes {<id: N11, name: Investigation team, type: Evaluation> (attribute items [Report findings, Recommendations])} 
Constraints {<id: C11, name: Recommendation implementation, rule constraints: [Resource allocation, Policy adoption], respond 
constraints: [Policy revisions, Resource redistribution]>} 
Annotations {(Recommendation effectiveness, Policy change impact, Resource utilization, 2021.7.30)}

COVID–19 
pandemic

Issues {<id: I12, name: Operational efficiency, type_dis: Operational interruption, time: 2021.7.15, address: Nanjing, application: 
Crisis management>} 
Nodes: {<id: N12, name: Crisis management team, type: Emergency operations> (attribute items [Strategic planning, Resource 
allocation, Unified command])} 
Constraints: {<id: C12, name: Operational challenges, rule constraints: [Resource constraints, Information flow], respond 
constraints: [Resource optimization, Communication enhancement]>} 
Annotations: {(Operational efficiency, Command effectiveness, Communication clarity, 2021.7.15)}

Interdepartmental 
collaboration (X12)

720 Henan 
rainstorm

Issues {<id: I12, name: Coordination failures, type_dis: Operational interruption, time: 2022.1.27, address: Zhengzhou, 
application: Disaster response coordination>} 
Nodes {<id: N12, name: Response coordination, type: Emergency operations> (attribute items [Emergency command, Operational 
integration])} 
Constraints {<id: C12, name: Operational coordination, rule constraints: [Fragmented response efforts, Communication barriers], 
respond constraints: [Unified response framework, Enhanced communication systems]>} 
Annotations {(Coordination effectiveness, Response time reduction, Stakeholder engagement, 2022.1.27)}

Data availability

Data will be made available on request.
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